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This is the first of two papers on the critical behavior of bond percolation
models in high dimensions. In this paper, we obtain strong joint control of the
critical exponents ' and $ for the nearest neighbor model in very high dimen-
sions d>>6 and for sufficiently spread-out models in all dimensions d>6. The
exponent ' describes the low-frequency behavior of the Fourier transform of the
critical two-point connectivity function, while $ describes the behavior of the
magnetization at the critical point. Our main result is an asymptotic relation
showing that, in a joint sense, '=0 and $=2. The proof uses a major extension
of our earlier expansion method for percolation. This result provides evidence
that the scaling limit of the incipient infinite cluster is the random probability
measure on Rd known as integrated super-Brownian excursion (ISE), in dimen-
sions above 6. In the sequel to this paper, we extend our methods to prove that
the scaling limits of the incipient infinite cluster's two-point and three-point
functions are those of ISE for the nearest neighbor model in dimensions d>>6.

KEY WORDS: Percolation; critical exponents; lace expansion; incipient
infinite cluster.

1. INTRODUCTION

1.1. Critical Exponents

We consider two models of independent bond percolation on Zd. For the
nearest neighbor model, a bond is a pair [x, y] of distinct sites in Zd,
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separated by unit Euclidean distance. For the spread-out model, a bond is
a pair [x, y] of distinct sites in Zd, with 0<&x& y&��L. We will con-
sider the case of large, but finite, L. In either model, we associate to each
bond an independent Bernoulli random variable n[x, y] taking the value 1
with probability p, and the value 0 with probability 1& p. A bond [x, y]
is said to be occupied if n[x, y]=1, and vacant if n[x, y]=0. We say that sites
u, v # Zd are connected, denoted x W y, if there is a lattice path from u to
v consisting of occupied bonds. If x and y are not connected, we write
x W% y.

For both the nearest neighbor and spread-out models, a phase transi-
tion occurs for d�2, in the sense that there is a critical value pc # (0, 1),
such that for p<pc there is with probability 1 no infinite connected cluster
of occupied bonds, whereas for p>pc there is with probability 1 a unique
infinite connected cluster of occupied bonds (percolation occurs). It is an
unproven prediction of the hypothesis of universality that, in any dimension d,
the behaviors of the nearest neighbor and spread-out models (for any L)
in the vicinity of the critical point are identical in all important aspects.

Much of this important behavior can be described in terms of critical
exponents. At present, the existence of critical exponents has been proved
only in high dimensions, where the critical behavior is the same as that on
a tree, using the triangle condition. Aizenman and Newman(1) introduced
the triangle condition as a sufficient condition for the existence of the criti-
cal exponent # for the susceptibility (expected cluster size of the origin),
with the value #=1. Subsequently Barsky and Aizenman(2) showed that the
triangle condition implied existence of the exponents $ for the magnetiza-
tion and ; for the percolation probability, with $=2 and ;=1. Nguyen(3)

showed that the triangle condition implied existence of the gap exponent 2,
with 2=2. Implications of the triangle condition for differentiability of the
number of clusters per site were explored in ref. 4. In the above results,
existence of critical exponents is in the form of upper and lower bounds
with different constants. For example, for the susceptibility /( p), the conse-
quence of the triangle condition is that c1( pc& p)&1�/( p)�c2( pc& p)&1

for p # [0, pc). In ref. 5, an infra-red bound was proved and used to show
that the triangle condition holds for the nearest neighbor model in suf-
ficiently high dimensions and for the spread-out model for d>6 and L
sufficiently large. We subsequently showed that d�19 is large enough for
the nearest neighbor model.(6) Thus the above critical exponents are known
to exist, and to take on the corresponding values for a tree, in these contexts.
In addition, it was shown in ref. 7 that the critical exponent & for the
correlation length is equal to 1

2 , in the sense of upper and lower bounds
with different constants, for the nearest neighbor model in sufficiently high
dimensions and for sufficiently spread-out models for d>6.
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In this paper, we extend some of the above results in two ways. Firstly,
we obtain power law asymptotic behavior of the Fourier transform of the
two-point function in the presence of a magnetic field, for small values of
the magnetic field and the frequency variable. Secondly, this asymptotic
behavior is joint, as a function of two variables. In addition to any intrinsic
interest, this joint behavior turns out to be relevant for the identification of
the scaling limit of the incipient infinite cluster as integrated super-Brownian
excursion, or ISE (see refs. 8, 9, and 10 for discussions of ISE). We will
return to this point below, and it will be the main topic of the sequel(11) to
this paper, hereafter referred to as II.

Our method of proof involves a major extension of the expansion for
percolation introduced in ref. 5. Moreover, a double expansion will be used
here. Our analysis is based in part on the corresponding analysis for lattice
trees, for which a double lace expansion was performed in ref. 12, and for
which a proof that the scaling limit is ISE in high dimensions was given in
refs. 13 and 14. We will also make use of the infra-red bound proved in
ref. 5, and of its consequence that, for example, the triangle condition of
ref. 1 holds in high dimensions.

The results obtained in this paper were announced in ref. 15. A survey
of the occurrence of ISE as a scaling limit for lattice trees and percolation
is given in ref. 16.

1.2. The Main Result

Consider nearest neighbor or spread-out independent bond percola-
tion on Zd, with bond density p # [0, 1]. Let C(0) denote the random set
of sites connected to 0, and let |C(0)| denote its cardinality. Let

{p(0, x; n)=Pp(C(0) % x, |C(0)|=n) (1.1)

denote the probability that the origin is connected to x by a cluster con-
taining n sites. For h�0, we define the generating function

{h, p (0, x)= :
�

n=1

{p(0, x; n) e&hn (1.2)

The generating function (1.2) converges for h�0.
We will work with Fourier transforms, and for an absolutely summable

function f on Zd define

f� (k)= :
x # Zd

f (x) eik } x, k=(k1 ,..., kd ) # [&?, ?]d (1.3)
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with k } x=�d
j=1 kjx j . For h>0 and any p # [0, 1], the Fourier transform

{̂h, p(k) exists since

:
x

:
�

n=1

{p(0, x; n) e&hn= :
�

n=1

nPp( |C(0)|=n) e&hn� :
�

n=1

ne&hn<� (1.4)

A similar estimate shows that the Fourier transform {̂h, p(k) exists also for
h=0 when p<pc , using the fact that Pp( |C(0)|=n) decays exponentially
in the subcritical regime. Our main object of study will be {̂h, pc

(k).
There is a convenient and well-known probabilistic interpretation for

the generating function (1.2), upon which we will rely heavily. For this, we
introduce a probability distribution on the lattice sites by declaring a site
to be ``green'' with probability 1&e&h and ``not green'' with probability e&h.
These site variables are independent, and are independent of the bond
occupation variables. We use G to denote the random set of green sites. In
this framework, {h, p(0, x) is the probability that the origin is connected to
x by a cluster of any finite size, but containing no green sites, i.e.,

{h, p(0, x)= :
�

n=1

Pp(0 W x, |C(0)|=n) e&hn

=Ph, p(0 W x, C(0) & G=<, |C(0)|<�) (1.5)

Here, Ph, p denotes the joint bond�site distribution. Assuming there is no
infinite cluster at pc , {0, p(0, x) is the probability that 0 is connected to x,
for any p�pc . It is a consequence of the results of refs. 2 and 5 that there
is no infinite cluster at pc for the high-dimensional systems relevant in this
paper.

For h�0, p # [0, 1], we define the magnetization

Mh, p=Ph, p(C(0) & G{<)=1& :
�

n=1

Pp( |C(0)|=n) e&hn (1.6)

and the susceptibility

/h, p=
�

�h
Mh, p= :

�

n=1

nPp( |C(0)|=n) e&hn

=E[|C(0)| I[C(0) & G=<]]={̂h, p(0) (1.7)

Here E denotes expectation and I denotes an indicator function.
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For k # Rd, we write k2=k } k and |k|=(k } k)1�2. The conventional
definitions of the critical exponents ' and $ (see [17, Section 7.1]) suggest
that

{̂0, pc
(k)tconst.

1
|k|2&' , as k � 0

(1.8)

{̂h, pc
(0)=/h, pc

tconst.
1

h1&1�$ , as h a 0

We use ``t'' to denote an asymptotic formula, in which the ratio of left and
right sides tends to 1 in the limit. The above asymptotic relations go
beyond what has been proved previously, even in high dimensions.

The closest proven analogue of the first relation of (1.8) is the infrared
bound

0�{̂0, p(k)�
c
k2 ( p # [0, pc), k # [&?, ?]d ) (1.9)

valid for sufficiently spread-out models for d>6 and for the nearest
neighbor model for d�19.(5, 6) The constant c in (1.9) is uniform in p<pc

and k # [&?, ?]d. The triangle condition, which states that the triangle
diagram defined by

{( p)= :
x, y

{0, p(0, x) {0, p(x, y) {0, p( y, 0)=|
[&?, ?]d

{̂0, p(k)3 d dk
(2?)d (1.10)

is finite for p= pc , is implied by (1.9), if d>6.
For the second relation of (1.8), Barsky and Aizenman(2) proved that,

under the triangle condition, Mh, pc
is bounded above and below by

constant multiples of h1�2. This is weaker than the second relation in two
senses: no asymptotic bound was obtained, and a relation for /h, pc

is a
stronger statement about the derivative of Mh, pc

.
Using the mean-field values '=0 and $=2 above six dimensions, the

simplest possible combination of the relations (1.8) for d>6 would be

{̂h, pc
(k)=

1
C1k2+C2h1�2+error (1.11)

where C1 and C2 are constants and the error term is lower order in some
suitable sense in the limit (k, h) � (0, 0). A priori, we cannot rule out the
possibility of cross terms such as |k| h1�4, and some such cross terms could
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possibly occur for d<6 (presumably with different powers of k and h). The
following theorem shows that the simple combination (1.11) is what
actually occurs in high dimensions, and provides joint control of the
asymptotic behavior in the limits h � 0, k � 0. In its statement, we denote
by ok(1) a function of k that goes to zero as k approaches 0. Similarly,
oh(1) denotes a function of h that goes to zero as h approaches 0. The
factor 23�2 in the statement of the theorem is introduced to agree with our
convention in II.

Theorem 1.1. For nearest neighbor bond percolation with d
sufficiently large, and for spread-out bond percolation with d>6 and L
sufficiently large (depending on d ), there are positive constants C, D2,
depending on d, L, and a bounded function =(h, k), such that for all
k # [&?, ?]d and h>0,

{̂h, pc
(k)=

C
D2k2+23�2h1�2 [1+=(h, k)] (1.12)

with

|=(h, k)|�ok(1)+oh(1) (1.13)

as h � 0 and�or k � 0. In addition, the limit {̂0, pc
(k)=limh a 0 {̂h, pc

(k) exists
and is finite for k{0, and obeys

{̂0, pc
(k)=

C
D2k2 [1+ok(1)] (1.14)

The constants C and D2 (1.12) and (1.14) are given in (5.3).
Assuming that universality holds, Theorem 1.1 would indicate that

(1.12) and (1.14) should actually be valid for the nearest neighbor model
for all d>6. Setting k=0 in (1.12) gives

/h, pc
={̂h, pc

(0)=h&1�2[2&3�2C+oh(1)] (1.15)

which gives the second statement of (1.8). Consequently, since M0, pc
=0,

Mh, pc
=|

h

0
/t, pc

dt=h1�2[2&1�2C+oh(1)] (1.16)

which is a statement that $=2, where in general it is expected that
Mh, pc

tconst. h1�$.
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Note that {0, pc
(0, x) is not summable if it decays like |x|2&d, as expected

for d>6. Therefore its Fourier transform is not well-defined without some
interpretation. We use the interpretation {̂0, pc

(k)=limh a 0 {̂h, pc
(k) because

{0, pc
(0, x) is then the inverse Fourier transform of {̂0, pc

(k). In fact, using
(1.12) and the dominated convergence theorem in the last step, we have

{0, pc
(0, x)=lim

h a 0
{h, pc

(0, x)

=lim
h a 0 |

[&?, ?]d
{̂h, pc

(k) e&ik } x d dk
(2?)d

=|
[&?, ?]d

{̂0, pc
(k) e&ik } x d dk

(2?)d (1.17)

Equation (1.14) is a statement that '=0. It does not immediately imply
that {0, pc

(0, x) behaves like |x| 2&d as x � �, but we intend to return to
this matter in a future publication.

If we write z=e&h, then the leading behavior on the right side of
(1.12) can be rewritten as C(D2k2+23�2

- 1&z)&1. This generating func-
tion has been identified as a signal for the occurrence of ISE as a scaling
limit, (13, 16) and this led us to conjecture in ref. 15 (see also refs. 13 and 16)
that above the upper critical dimension the scaling limit of the incipient
infinite cluster is ISE.

The incipient infinite cluster is a concept admitting various interpre-
tations. In refs. 18 and 19, an incipient infinite cluster is constructed in
2-dimensional percolation models as an infinite cluster at the critical point.
Such constructions are necessarily singular with respect to the original
percolation model, which has no infinite cluster at pc . Our point of view is
to regard the incipient infinite cluster as a cluster in Rd arising in the scaling
limit. More precisely, at p= pc we condition the size of the cluster of the
origin to be n, scale space by a multiple of n&1�4, and examine the cluster
in the limit n � �. In II, we obtain strong evidence that this scaling limit
is ISE for d>6. ISE can be regarded as the law of a random probability
measure on Rd, but in addition it contains more detailed information
including the structure of all paths joining pairs of points in the cluster.
This is consistent with the recent approach of refs. 20�23 to the scaling
limit, although here our focus is on a single percolation cluster, rather than
on many clusters. ISE is almost surely supported on a compact subset of Rd,
but on the scale of the lattice, this corresponds to an infinite cluster. Thus
we regard the limiting object as the scaling limit of the incipient infinite
cluster.
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To relate the scaling limit of the incipient infinite cluster to ISE, we
will prove in II that for the nearest neighbor model in sufficiently high
dimensions, (1.21) can be promoted to a statement for complex z=e&h in
the unit disk |z|<1, with uniform error estimates. Let

A� (k)=|
�

0
te&t 2�2e&k2t�2 dt (1.18)

denote the Fourier transform of the ISE two-point function (see refs. 8, 9,
13, 24, 25, and 16). For the nearest neighbor model in high dimensions,
contour integration will be used in II to show that, as n � �,

{̂pc
(kD&1n&1�4; n)=C(8?n)&1�2 A� (k)[1+O(n&=)] (1.19)

for any = # (0, 1
2). In particular,

Ppc
( |C(0)|=n)=

1
n

{̂pc
(0; n)=C(8?)&1�2 n&3�2[1+O(n&=)] (1.20)

which is stronger than (1.16). Analogous results will be obtained for the
three-point function. However, as we will explain in II, for technical
reasons we are unable to obtain these results for sufficiently spread-out
models in all dimensions d>6.

It has been argued since ref. 26 that the upper critical dimension of
percolation is equal to 6, i.e., that critical exponents depend on the dimension
for d�6 but not for d>6. Our proof provides an understanding of the
critical dimension as arising as 6=4+2. To explain this, we first introduce
the notion of backbone. Given a cluster containing x and y, the backbone
joining x to y is defined to consist of those sites u # C(x) for which there
are edge-disjoint paths consisting of occupied bonds from x to u and from
u to y. The backbone can be depicted as consisting of all connections
between x and y, with all ``dangling ends'' removed. An ISE cluster is
4-dimensional for d�4, (27, 28) and distinct points in the cluster are joined
by a 2-dimensional Brownian path. In our expansion, the leading behavior
corresponds to neglecting intersections between a backbone and a percola-
tion cluster. Considering the percolation cluster to scale like an ISE cluster,
intersections will generically not occur above 4+2=6 dimensions. This
points to d=6 as the upper critical dimension.

1.3. Organization

This paper is organized as follows. The proof of Theorem 1.1 makes
use of a double expansion. The first expansion is described in Section 2.
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It is based on the expansion of ref. 5, but requires major adaptation to deal
with the presence of the magnetic field h. Two versions of this expansion
will be presented in Section 2: a simpler version which we call the ``one-M
scheme,'' and a more extensive expansion which we call the ``two-M
scheme.'' The one-M scheme is used in Section 3 to prove a weaker version
of Theorem 1.1 that involves only upper and lower bounds. The two-M
scheme is used to refine these bounds to an asymptotic relation. The
k2 term in (1.12) is extracted in Section 4, where existence of the limit
limh a 0 {̂h, pc

(k) is established and (1.14) is proved. The more difficult h1�2

term involves a second expansion, derived in Section 5, which is used to
complete the proof of Theorem 1.1.

Our method involves bounding terms in an expansion by Feynman
diagrams. To estimate these Feynman diagrams, we will at times employ
the method of power counting. In Appendix A, we recall some power
counting results of Reisz(29, 30) that we will use.

This paper can be read independently of ref. 5, apart from the fact that
we will make use of the infrared bound and techniques of diagrammatic
estimation from ref. 5.

2. THE FIRST EXPANSION

Our method makes use of a double expansion. In this section, we
derive the first of the two expansions, to finite order. We will derive two
versions of the expansion in this section, a ``one-M '' scheme and ``two-M ''
scheme. For p<pc and h=0, these two expansions are the same, and are
essentially the expansion of ref. 5. Additional terms arise, however, for
h>0. Dealing with these new terms poses new difficulties that must be
overcome. The derivation of the expansion applies equally well to the
nearest neighbor and spread-out models, and we treat the two cases
simultaneously.

The derivation is based on probabilistic arguments requiring p�pc

and h�0, which we henceforth assume. We also assume henceforth that
there is almost surely no infinite cluster at the critical point, which is
known to be the case under the assumptions of Theorem 1.1.(2, 5) We will
first derive the expansions to finite order, and then prove that they can be
extended to infinite order, for h�0 when p<pc , and for h>0 when p= pc .

Our starting point is (1.5). For p�pc and h�0, (1.5) reduces under
the above assumptions to

{h, p(0, x)= :
�

n=1

Pp(0 W x, |C(0)|=n) e&hn=Ph, p(0 W x, C(0) & G=<)

(2.1)
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This is the quantity for which we want an expansion. Before beginning the
derivation of the expansion, we first introduce some definitions and prove
a basic lemma that is at the heart of the expansion method.

2.1. Definitions and Basic Lemmas

The following definitions will be used repeatedly throughout the paper.

Definition 2.1. (a) Define 0=[x # Zd : &x&1=1] for the nearest
neighbor model and 0=[x # Zd : 0<&x&��L] for the spread-out model.
A bond is an unordered pair of distinct sites [x, y] with y&x # 0. A directed
bond is an ordered pair (x, y) of distinct sites with y&x # 0. A path from
x to y is a self-avoiding walk from x to y, considered to be a set of bonds.
Two paths are disjoint if they have no bonds in common (they may have
common sites). Given a bond configuration, an occupied path is a path con-
sisting of occupied bonds.

(b) Given a bond configuration, two sites x and y are connected,
denoted x W y, if there is an occupied path from x to y or if x= y. We
write x W% y when it is not the case that x W y. We denote by C(x) the
random set of sites which are connected to x. Two sites x and y are
doubly-connected, denoted x � y, if there are at least two disjoint occupied
paths from x to y or if x= y. Given a bond b=[u, v] and a bond con-
figuration, we define C� b(x) to be the set of sites which remain connected to
x in the new configuration obtained by setting nb=0. Given a set of sites A,
we say x W A if x W y for some y # A, and we define C(A)=�x # A C(x)
and C� b(A)=�x # A C� b(x).

(c) Given a set of sites A/Zd and a bond configuration, we say
x W y in A if there is an occupied path from x to y having all of its sites
in A (so in particular x, y # A), or if x= y # A. Two sites x and y are
connected through A, denoted x �w�A y, if they are connected in such a way
that every occupied path from x to y has at least one bond with an
endpoint in A, or if x= y # A.

(d) Recall that site variables were introduced above (1.5). Given a
bond�site configuration | and a bond b, let |b be the configuration that
agrees with | everywhere except possibly in the occupation status of b,
which is occupied in |b. Similarly, |b is defined to be the configuration
that agrees with | everywhere except possibly in the occupation status of b,
which is vacant in |b . Given an event E and a bond�site configuration |,
a bond b (occupied or not) is called pivotal for E if |b # E and |b � E. We
say that a directed bond (u, v) is pivotal for the connection from x to y if
x # C� [u, v](u), y # C� [u, v](v) and y � C� [u, v](x). If x W A then there is a
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natural order to the set of occupied pivotal bonds for the connection from
x to A (assuming there is at least one occupied pivotal bond), and each of
these pivotal bonds is directed in a natural way, as follows. The first pivotal
bond from x to A is the directed occupied pivotal bond (u, v) such that u
is doubly-connected to x. If (u, v) is the first pivotal bond for the connec-
tion from x to A, then the second pivotal bond is the first pivotal bond for
the connection from v to A, and so on.

(e) We say that an event E is increasing if, given a bond�site con-
figuration | # E, and a configuration |$ having the same site configuration
as | and for which each occupied bond in | is also occupied in |$, then
|$ # E.

Definition 2.2. (a) Given a set of sites S, we refer to bonds with
both endpoints in S as bonds in S. A bond having at least one endpoint in
S is referred to as a bond touching S. We say that a site x # S is in S or
touching S. We denote by SI the set of bonds and sites in S. We denote by
ST the set of bonds and sites touching S.

(b) Given a bond�site configuration | and a set of sites S, we denote
by | |SI

the bond�site configuration which agrees with | for all bonds and
sites in S, and which has all other bonds vacant and all other sites non-
green. Similarly, we denote by | | ST

the bond�site configuration which
agrees with | for all bonds and sites touching S, and which has all other
bonds vacant and all other sites non-green. Given an event E and a deter-
ministic set of sites S, the event [E occurs in S ] is defined to consist of
those configurations | for which | |SI

# E. Similarly, we define the event
[E occurs on S ] to consist of those configurations | for which | |ST

# E.
Thus we distinguish between ``occurs on'' and ``occurs in.''

(c) The above definitions will now be extended to certain random
sets of sites. Suppose A/Zd. For S=C(A) or S=Zd"C(A), we have
| |ST

=| | SI
, since bonds touching but not in C(A) are automatically

vacant. For such an S, we therefore define [E occurs on S ]=[E occurs
in S ]=[| : | |ST

# E ]. For S=C� [u, v](A) (see Definition 2.1(b)) or S=
Zd"C� [u, v](A), we define S� T=ST"[u, v] and S� I=SI"[u, v], and denote by
| |S� T

and | | S� I
the configurations obtained by setting [u, v] vacant in | |ST

and | |SI
respectively. Then | |S� T

=| |S� I
for these two choices of S, and we

define [E occurs on S ]=[E occurs in S ]=[| : | |S� T
# E ].

The above definition of [E occurs on S ] is intended to capture the
notion that if we restrict attention to the status of bonds and sites touch-
ing S, then E is seen to occur. A kind of asymmetry has been introduced,
intentionally, by our setting bonds and sites not touching S to be respec-
tively vacant and non-green, as a kind of ``default'' status. Some examples
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are: (1) [v W x occurs in S ], for which Definitions 2.1(c) and 2.2(b) agree,
(2) [x W G occurs on S ]=[[v : v W x occurs in S ] & G{<], and (3)
[x W% G occurs on S ]=[[v : v W x occurs in S ] & G=<].

The following lemma is an immediate consequence of Definition 2.2,
and shows that the notions of ``occurs on'' and ``occurs in'' preserve the
basic operations of set theory. The first statement of the lemma is
illustrated by examples (2) and (3) above.

Lemma 2.3. For any events E, F and for random or deterministic
sets S, T of sites,

[E occurs on S ]c=[E c occurs on S ]

[(E _ F ) occurs on S ]=[E occurs on S ] _ [F occurs on S ]

[[E occurs on S ] occurs on T ]=[E occurs on S & T ]

The corresponding identities with ``occurs in'' are also valid.

We are now able to prove our basic factorization lemma. An
erroneous lemma of this sort was given in [5, Lemma 2.1]. Corrected
versions can be found in refs. 6 or 31. We use angular brackets to denote
the joint expectation with respect to the bond and site variables.

Lemma 2.4. Let p�pc . For p= pc , assume there is no infinite
cluster. Given a bond [u, v], a finite set of sites A, and events E, F, we have

(I[E occurs on C� [u, v](A) 6 F occurs in Zd"C� [u, v](A) 6 [u, v] occupied])

= p(I[E occurs on C� [u, v](A)](I[F occurs in Zd"C� [u, v](A)])) (2.2)

where, in the second line, C� [u, v](A) is a random set associated with the
outer expectation. In addition, the analogue of (2.2), in which ``[u, v]
occupied'' is removed from the left side and ``p '' is removed from the right
side, also holds.

Proof. The proof is by conditioning on the bond cluster of A which
remains after setting n[u, v]=0, which we denote C� [u, v](A)b . This cluster is
finite with probability 1. We do not condition on the status of the sites in
this bond cluster. Let B denote the set of all finite bond clusters of A.
Given B # B, we denote the set of sites in B by Bs . Conditioning on
C� [u, v](A)b , we have
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(I[E occurs on C� [u, v](A) 6 F occurs in Zd"C� [u, v](A) 6 [u, v] occupied])

= :
B # B

(I[C� [u, v](A)b=B 6 E occurs on B� s 6

F occurs in Zd"B� s 6 [u, v] occupied]) (2.3)

where B� s emphasizes the vacancy of [u, v], as described in Definition 2.2(c).
Since the first two of the four events on the right side of (2.3) depend

only on bonds�sites touching Bs (according to Definition 2.2(c), excluding
[u, v]), while the third event depends only on bonds�sites which do not
touch Bs (again, excluding [u, v]), and the fourth event depends only on
[u, v], this independence allows us to write (2.3) as

p :
B # B

(I[C� [u, v](A)b=B 6 E occurs on B� s])(I[F occurs in Zd"B� s])

=p(I[E occurs on C� [u, v](A)](I[F occurs in Zd"C� [u, v](A)]))
(2.4)

The random set C� [u, v](A) in the inner expectation corresponds to the outer
expectation. This completes the proof of (2.2). The analogue stated in the
lemma holds by the same proof. K

In Sections 2.2 and 2.3, we will apply Lemma 2.4 several times.
Further applications will occur in Section 5. As an example of a situation
in which an event of the type appearing on the left side of (2.2) arises, we
have the following lemma.

Lemma 2.5. Given a deterministic set A/Zd, a directed bond
(a$, a), and a site y � A, the event E defined by

E=[(a$, a) is a pivotal bond for y � A] (2.5)

is equal to the event F defined by

F=[a W A occurs on C� [a, a$](A) 6 y W a$ occurs in Zd"C� [a, a$](A)]
(2.6)

Proof. First we show that E/F. Suppose E occurs, so we have a
configuration for which (a$, a) is pivotal for the connection from y to A.
Then a # C� [a$, a](A) and hence a W A occurs on C� [a$, a](A). Also, y #
C� [a$, a](a$), and hence y W a$ occurs in C� [a$, a](a$). But since (a$, a) is pivo-
tal, C� [a$, a](a$)/Zd"C� [a$, a](A) and hence y W a$ occurs in Zd"C� [a$, a](A).
Thus F occurs.
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Now we show that F/E. Suppose F occurs. It suffices to show that
(1) y W A when (a$, a) is occupied, and (2) y W% A and y W a$ when (a$, a)
is vacant. We see this as follows. (1) If (a$, a) is occupied, then it is clear
from the definition of F that y W A. (2) If (a$, a) is vacant, then
C� [a$, a](A)=C(A). Since y W a$ in Zd"C� [a$, a](A), we have y W a$. Also, it
follows that y � C� [a$, a](A). Thus y � C(A). K

2.2. The First Expansion: One-M Scheme

In this section, we generate an expansion that will be used to prove
upper and lower bounds on the two-point function, as an initial step in the
proof of Theorem 1.1. The expansion will produce a convolution equation
for {h, p(0, x), for h, p such that h�0 and p<pc or h>0 and p= pc . We
refer to this expansion as the one-M scheme, because remainder terms in
the expansion will be bounded in Section 3 using a single factor of the
magnetization Mh, p .

The starting point for the expansion is to regard a cluster contributing
to {h, p(0, x)=P(0 W x, 0 W% G) as a string of sausages joining 0 to x and
not connected to G. In this picture, the ``string'' corresponds to the pivotal
bonds for the connection from 0 to x, and the sausages are the connected
components of C(0) that remain if these pivotal bonds are made vacant.
Suppose the pivotal bonds for the connection from 0 to x are given, in
order, by (ui , vi ), i=1,..., n. Let v0=0 and un+1=x. Then the j th sausage
is defined to be the connected cluster of vj&1 after setting [uj&1 , vj&1] and
[uj , vj ] vacant ( j=1,..., n+1), omitting reference to the undefined bonds
[u0 , v0] and [un+1 , vn+1] when j=1 or j=n+1. By definition, the j th
sausage is doubly connected between vj&1 and uj , which we refer to respec-
tively as the left and right endpoints of the j th sausage. We regard the
sausages as interacting with each other, in the sense that they cannot inter-
sect each other. In high dimensions, the interaction should be weak, and
our goal is to make an approximation in which the sausages are treated as
independent. The approximation will introduce correction terms which are
represented as higher order terms in the expansion, and these can be con-
trolled in high dimensions.

We begin by defining some events. Given a bond [u$, v$], let

E0(0, x)=[0 W x 6 0 W% G] (2.7)

E$0(0, x)=[0 � x 6 0 W% G] (2.8)

E"0(0, u$, v$)=E$0(0, u$) occurs on C� [u$, v$](0) (2.9)

E0(0, u$, v$, x)=E$0(0, u$) & [(u$, v$) is occupied and pivotal for 0 W x]
(2.10)
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Given a set of sites A/Zd, we also define

{A
h, p(0, x)=(I[(0 W x 6 0 W% G) occurs in Zd"A]) (2.11)

The first step in the expansion is to write

{h, p(0, x)=(I[E0(0, x)]) =(I[E$0(0, x)]) + :
(u0 , v0)

(I[E0(0, u0 , v0 , x)])
(2.12)

where the sum is over directed bonds (u0 , v0). We now wish to apply
Lemma 2.4 to factor the expectation in the last term on the right side.
Arguing as in the proof of Lemma 2.5, E0(0, u0 , v0 , x) can be written as the
intersection of the events that E$0(0, u0) occurs on C� [u0 , v0](0), that [u0 , v0]
is occupied, and that (v0 W x 6 v0 W% G) occurs in Zd"C� [u0 , v0](0). Applying
Lemma 2.4 then gives

(I[E0(0, u0 , v0 , x)]) = p(I[E"0(0, u0 , v0)] {C� [u0 , v0](0)
h, p (v0 , x)) (2.13)

Therefore,

{h, p(0, x)=(I[E$0(0, x)])+ p :
(u0 , v0)

(I[E"0(0, u0 , v0)] {C� [u0 , v0](0)
h, p (v0 , x))

(2.14)

Before proceeding with the expansion, we give a brief perspective on
where we are heading. To leading order, we would like to replace
{C� [u0 , v0](0)

h, p (v0 , x) by {h, p(v0 , x), which would produce a simple convolution
equation for {h, p and would effectively treat the first sausage in the cluster
joining 0 to x as independent of the other sausages. Such a replacement
should create a small error provided the backbone (see Section 1.2) joining
v0 to x typically does not intersect the cluster C� [u0 , v0](0). Above the upper
critical dimension, where we expect the backbone to have the character of
Brownian motion and the cluster C� [u0 , v0](0) to have the character of an
ISE cluster, this lack of intersection demands the mutual avoidance of
a 2-dimensional backbone and a 4-dimensional cluster. This is a weak
demand when d>6, and this leads to the interpretation of the critical
dimension 6 as 4+2. As was pointed out in ref. 1, and as we will show in
Section 3, bounding errors in the above replacement leads to the triangle
diagram, whose convergence at the critical point is also naturally
associated with d>6. When h=0, the diagrams that emerge in estimating
the expansion can be bounded in terms of the triangle diagram, as was
done in ref. 5, but for h{0 other diagrams, including the square, will also
arise. However, square diagrams arise only in conjunction with factors of
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the magnetization Mh, p=Ph, p(0 W G) that vanish in the limit h � 0 more
rapidly than the divergence of the square diagram as a function of h. These
terms therefore make no contribution in the limit.

We now return to the derivation of the expansion. Let A be a set of
sites. To effect the replacement described in the previous paragraph, we
write

{A
h, p(v, x)={h, p(v, x)&[{h, p(v, x)&{A

h, p(v, x)] (2.15)

and proceed to derive an expression for the difference in square brackets on
the right side. Recall the notation v �w�A x of Definition 2.1(c). Similarly, we
denote by v �w�A G the event that every occupied path from v to any green
site must contain a site in A, or that v # G & A. The quantity in square
brackets in (2.15) is then given by

{h, p(v, x)&{A
h, p(v, x)

=(I[v W x 6 v W% G])&(I[(v W x 6 v W% G) occurs in Zd"A])

=(I[v W x 6 v W% G])&(I[v W x occurs in Zd"A 6 v W% G])

+(I[v W x occurs in Zd"A 6 v W% G])

&(I[(v W x 6 v W% G) occurs in Zd "A])

=(I[v �w�A x 6 v W% G]) &(I[v W x in Zd"A 6 v �w�A G]) (2.16)

Defining

F1(v, x; A)=[v �w�A x 6 v W% G] (2.17)

F2(v, x; A)=[v W x in Zd "A 6 v �w�A G] (2.18)

this gives

{h, p(v, x)&{A
h, p(v, x)=(I[F1(v, x; A)]) &(I[F2(v, x; A)]) (2.19)

We define events associated with the event F1(v, x; A) by

F $1(v, x; A)=F1(v, x; A)

& [_3 pivotal (u$, v$) for v W x such that v �w�A u$] (2.20)

F"1(v, u$, v$; A)=[F $1(v, u$; A) occurs on C� [u$, v$](v)] (2.21)

F1(v, u$, v$, x; A)=F $1(v, u$; A)

& [(u$, v$) is occupied and pivotal for v W x] (2.22)
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For n�0, let

C� n=C� [un , vn](vn&1) (2.23)

with v&1=0. The random set C� n is associated to an expectation, and we
will sometimes emphasize this association by using a subscript n for the
corresponding expectation. Using (2.14), (2.15), (2.19), and (2.23), we
have

{h, p(0, x)=(I[E $0(0, x)])+ p :
(u0 , v0)

(I[E"0(0, u0 , v0)]) {h, p(v, x)

& p :
(u0 , v0)

(I[E"0(0, u0 , v0)](I[F1(v0 , x; C� 0)]) 1) 0

+ p :
(u0 , v0)

(I[E"0(0, u0 , v0)](I[F2(v0 , x; C� 0)]) 1) 0 (2.24)

Here, we have tacitly assumed that the sums on the right side converge. We
will continue to make this kind of assumption in what follows, and return
to this issue at the end of Section 2.2.

In the one-M scheme, we will expand terms involving F1 , but not
expand those involving F2 . For the F1 terms, by definition we have

(I[F1(vn&1 , x; C� n&1)]) n

=(I[F $1(vn&1 , x; C� n&1)]) n+ :
(un , vn)

(I[F1(vn&1 , un , vn , x; C� n&1)]) n

(2.25)

Arguing as in the proof of Lemma 2.5, the event F1(vn&1 , un , vn , x; C� n&1)
is the intersection of the events that F $1(vn&1 , un ; C� n&1) occurs on
C� [un , vn]

n (vn&1), that [un , vn] is occupied, and that (vn W x 6 vn W% G)
occurs in Zd"C� [un , vn]

n (vn&1). Therefore, applying Lemma 2.4, we have

(I[F1(vn&1 , un , vn , x; C� n&1)]) n

= p(I[F"1(vn&1 , un , vn ; C� n&1)] {C� n
h, p(vn , x)) n (2.26)

1091Incipient Infinite Cluster in High-Dimensional Percolation



Using (2.19), substitution of (2.26) into (2.25) leads to

(I[F1(vn&1 , x; C� n&1)]) n

=(I[F $1(vn&1 , x; C� n&1)]) n

+ p :
(un , vn)

(I[F"1(vn&1 , un , vn ; C� n&1)]) n {h, p(vn , x)

& p :
(un , vn)

(I[F"1(vn&1 , un , vn ; C� n&1)](I[F1(vn , x; C� n)]) n+1) n

+ p :
(un , vn)

(I[F"1(vn&1 , un , vn ; C� n&1)](I[F2(vn , x; C� n)]) n+1) n

(2.27)

To abbreviate the notation, we define

Yn=I[F1(vn&1 , x; C� n&1)] (2.28)

Y $n=I[F $1(vn&1 , x; C� n&1)] (2.29)

Y n"=I[F"1(vn&1 , un , vn ; C� n&1)] (2.30)

Then (2.27) can be rewritten as

(Yn) n=(Y $n) n+(Y"n) n {&(Y"n(Yn+1) n+1) n

+(Y"n(I[F2(vn , x; C� n)]) n+1) n (2.31)

where we further abbreviate the notation by omitting p �(un , vn) from the
last three terms on the right side. Substitution of (2.31), with n=1, into the
third term of (2.24) gives

{h, p(0, x)=((I[E $0]) 0&(I[E"0](Y $1) 1) 0)

+((I[E"0]) 0&(I[E"0](Y"1) 1) 0) {h, p

+(I[E"0](Y"1(Y2) 2)1) 0+(I[E"0](I[F2]) 1) 0

+(I[E"0](Y"1(I[F2]) 2) 1) 0 (2.32)

The expansion can be iterated by applying (2.31) to the term on the right
involving (Y2) 2 , and so on.
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To express the result of this iteration compactly, we introduce the
following notation. In place of ( } )n , we write En . For n�1, let

, (0)
h, p(0, x)=E0 I[E $0(0, x)] (2.33)

, (n)
h, p(0, x)=(&1)n E0I[E"0] E1Y"1 } } } En&1 Y"n&1EnY $n (2.34)

8(0)
h, p(0, v0)= p :

u0 # v0&0

E0I[E"0(0, u0 , v0)] (2.35)

8(n)
h, p(0, vn)=(&1)n p :

un # vn&0

E0I[E"0] E1Y"1 } } } En&1Y"n&1EnY"n (2.36)

r (n)
h, p(0, x)=(&1)n E0I[E"0] E1Y"1 } } } En&1 Y"n&1EnYn (2.37)

R (n)
h, p(0, x)=(&1)n&1 E0 I[E"0] E1 Y"1 } } } En&1Y"n&1 EnI[F2(vn&1 , x; C� n&1)]

(2.38)

In the above, the notation continues to omit the sums over pivotal bonds
and the factors of p associated with each product. For each N�0, the
iteration indicated in the previous paragraph then gives

{h, p(0, x)= :
N

n=0

, (n)
h, p(0, x)+ :

N

n=0

:
vn

8 (n)
h, p(0, vn) {h, p(vn , x)

+ :
N+1

n=1

R (n)
h, p(0, x)+r (N+1)

h, p (0, x) (2.39)

The cases N=0 and N=1 are given explictly above in (2.24) and (2.32).
For p<pc , h�0, or for p= pc , h>0, it was argued below (1.4) that the
Fourier transform {̂h, p(k) exists. The bounds of Lemmas 3.4 and 3.6 below
will show that the Fourier transform of each of the quantities on the right
side of (2.39) also exists, under the hypotheses of Theorem 1.1. These
bounds will also imply convergence of the various summations arising in
the course of deriving the expansion. For each N�0, this leads to

{̂h, p(k)=
�N

n=0 ,� (n)
h, p(k)+�N+1

n=1 R� (n)
h, p(k)+ r̂ (N+1)

h, p (k)

1&�N
n=0 8� (n)

h, p(k)
(2.40)

In this one-M scheme for the expansion, ,h, p and 8h, p are bounded
by the same Feynman diagrams as in ref. 5, but now there is a G-free con-
dition on the connections in each of the nested expectations defining the
diagrams. If we set h=0, the G-free condition becomes vacuous, the terms
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involving F2 in the remainder vanish, and we recover the expansion of
ref. 5.

2.3. The First Expansion: Two-M Scheme

For the proof of Theorem 1.1, we require a more complete expansion,
in which bounds on remainder terms will involve two factors of the
magnetization Mh, p . We therefore refer to this new expansion as the two-
M scheme. The expansion proceeds by further expanding the F2 that was
left unexpanded in the one-M scheme, in R (n)

h, p(0, x) of (2.38).
We begin by decomposing F2 into several events. Using the notion of

``sausage'' defined at the beginning of Section 2.2, we introduce the follow-
ing definitions:

F3(v, x; A) is the event that v W x, v �w�A G, exactly one sausage is
connected to G, and the right endpoint of the sausage which is connected
to G is connected to v in Zd"A.

F4(v, x; A) is the event that v W x, v �w�A G, two or more sausages are
connected to G, and the right endpoints of all sausages which are connected
to G are connected to v in Zd"A.

F5(v, x; A) is the event that v �w�A x, v �w�A G, and the right endpoints
of all sausages which are connected to G are connected to v in Zd"A.

The event F4 involves two disjoint connections to G and will lead to
a bound involving M 2

h, p . It does not require further expansion. The
events F3 , F4 , F5 are related to F2 in the following lemma. In the lemma,
_* denotes disjoint union.

Lemma 2.6. For v, x # Zd and A/Zd,

F2(v, x; A)=[F3(v, x; A) _* F4(v, x; A)]"F5(v, x; A) (2.41)

Proof. Since F2 and F5 are disjoint, F2(v, x; A)=[F2(v, x; A) _*
F5(v, x; A)]"F5(v, x; A). Thus it suffices to show that

F2(v, x; A) _* F5(v, x; A)=F3(v, x; A) _* F4(v, x; A) (2.42)

By definition, the left side is the event that v W x, v �w�A G, and the right
endpoints of all sausages which are connected to G are connected to v in
Zd"A. The desired identity (2.42) then follows, since F3 and F4 provide a
disjoint decomposition of the above event, according to the number of
sausages connected to G. K
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Now we define the events

F $3(v, x; A)=F3(v, x; A) & [(last sausage of v W x) �w�A G] (2.43)

F $4(v, x; A)=F4(v, x; A) & [(last sausage of v W x) �w�A G] (2.44)

F $5(v, x; A)=F5(v, x; A) & [_3 pivotal (u$, v$) for v W x such that v �w�A u$]
(2.45)

and for j=3, 4, 5

Fj"(v, u$, v$; A)=F $j (v, u$; A) occurs on C� [u$v$](v) (2.46)

Fj (v, u$, v$, x; A)=F $j (v, u$; A) & [(u$, v$) is occupied and pivotal for v W x]

& [C� [u$, v$](x) & G=<] (2.47)

These events obey the identity of the following lemma.

Lemma 2.7. For j=3, 4, 5,

(I[Fj (v, x; A)])

=(I[F $j (v, x; A)]) + p :
(u$, v$)

(I[Fj"(v, u$, v$; A)] {C� [u$, v$](v)
h, p (v$, x))

(2.48)

Proof. Let j=3, 4, 5. We first observe that

(I[Fj (v, x; A)])=(I[F $j (v, x; A)])+ :
(u$, v$)

(I[F j (v, u$, v$, x; A)]) (2.49)

Arguing as in the proof of Lemma 2.5, each Fj (v, u$, v$, x; A) can be written
as the intersection of the events that F $j (v, u$; A) occurs on C� [u$, v$](v), that
(v$ W x 6 v$ W% G) occurs in Zd"C� [u$, v$](v), and that [u$, v$] is occupied.
Hence Lemma 2.4 can be applied to conclude

(I[F j (v, u$, v$, x; A)]) = p(I[F j"(v, u$, v$; A)] {C� [u$, v$](v)
h, p (v$, x)) (2.50)

Combined with (2.49), this gives (2.48). K

We can now begin the expansion of the F2 term. Using Lemma 2.6,
and Lemma 2.7 for F3 and F5 , we obtain
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(I[F2(v, x; A)])

=(I[F3(v, x; A)])&(I[F5(v, x; A)]) +(I[F4(v, x; A)])

=(I[F $3(v, x; A)])&(I[F $5(v, x; A)]) +(I[F4(v, x; A)])

+ p :
(u$, v$)

([I[F"3(v, u$, v$; A)]&I[F"5(v, u$, v$; A)]] {C� [u$, v$](u$)
h, p (v$, x))

(2.51)

The F4 term is not expanded further. For the last term, we use (2.15) and
(2.19). This gives

(I[F2(v, x; A)])=(I[F $3(v, x; A)]) &(I[F $5(v, x; A)])

+(I[F4(v, x; A)])

+ p :
(u$, v$)

(I[F"3(v, u$, v$; A)]

&I[F"5(v, u$, v$; A)]) {h, p(v$, x)

& p :
(u$, v$)

([I[F"3(v, u$, v$; A)]

&I[F"5(v, u$, v$; A)]](I[F1(v$, x; C� [u$, v$](u$))]))

+ p :
(u$, v$)

([I[F"3(v, u$, v$; A)]

&I[F"5(v, u$, v$; A)]](I[F2(v$, x; C� [u$, v$](u$))]))
(2.52)

We are now in a position to generate the expansion. First, we intro-
duce some abbreviated notation. Let

Wn=I[F3(vn&1 , x; C� n&1)]&I[F5(vn&1 , x; C� n&1)] (2.53)

W $n=I[F $3(vn&1 , x; C� n&1)]&I[F $5(vn&1 , x; C� n&1)] (2.54)

W"n=I[F"3(vn&1 , un , vn ; C� n&1)]&I[F"5(vn&1 , un , vn ; C� n&1)] (2.55)

(F2)n=I[F2(vn&1 , x; C� n&1)]
(2.56)

(F4)n=I[F4(vn&1 , x; C� n&1)]

To further abbreviate the notation, in generating the expansion we omit all
arguments related to sites and omit the summations p �(un , vn) that are
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associated with each product. Then, recalling (2.28), (2.52) with A=C� n&1

can be written more compactly as

( (F2)n) n=(W$n) n+( (F4)n) n+(W"n) n {

+(W"n( (F2)n+1) n+1) n&(W"n(Yn+1) n+1) n (2.57)

An expansion can now be generated by recursively substituting (2.31),
which now reads

(Yn) n=(Y $n) n+(Y"n) n {&(Y"n(Yn+1) n+1) n+(Y"n( (F2)n+1) n+1) n

(2.58)

into the last term on the right side of (2.57). The first iteration yields

( (F2)n)n=(W$n) n+( (F4)n) n+(W"n) n {+(W"n( (F2)n+1) n+1)n

&(W"n(Y$n+1) n+1) n&(W"n(Y"n+1) n+1) n {

&(W"n(Y"n+1( (F2)n+2) n+2) n+1) n

+(W"n(Y"n+1(Yn+2) n+2) n+1) n (2.59)

We then apply (2.58) to Yn+2 , and so on. We halt the expansion in any
term in which an F4 appears, or when an F2 appears in a term already con-
taining a W". The result is substituted into the formula for R (n)

h, p of (2.38).
To organize the resulting terms, we introduce the following quantities,

for n�1, m�1:

! (n, 0)
h, p (0, x)=(&1)n&1 E0I[E"0] E1 Y"1 } } } En&1Y"n&1EnW $n (2.60)

!(n, m)
h, p (0, x)=(&1)n+m&1 E0 I[E"0] E1 Y"1 } } } En&1Y"n&1En W"n

_En+1Y"n+1 } } } En+m&1Y"n+m&1En+m Y $n+m (2.61)

5 (n, 0)
h, p (0, vn)=(&1)n&1 E0 I[E"0] E1 Y"1 } } } En&1 Y"n&1EnW"n (2.62)

5 (n, m)
h, p (0, vn+m)=(&1)n+m&1 E0 I[E"0] E1 Y"1 } } } En&1Y"n&1En W"n

_En+1Y"n+1 } } } En+m&1Y"n+m&1En+m Y"n+m (2.63)

S (n)
h, p(0, x)=(&1)n E0I[E"0] E1Y"1 } } } En&1 Y"n&1En(F4)n (2.64)

U (n, m)
h, p (0, x)=(&1)n+m E0I[E"0] E1Y"1 } } } En&1 Y"n&1EnW"n

_En+1Y"n+1 } } } En+m&1Y"n+m&1En+m(F2)n+m (2.65)

u(n, m)
h, p (0, x)=(&1)n+m&1 E0 I[E"0] E1 Y"1 } } } En&1Y"n&1En W"n

_En+1Y"n+1 } } } En+m&1Y"n+m&1En Yn+m (2.66)

1097Incipient Infinite Cluster in High-Dimensional Percolation



In the above, the notation continues to omit sums and factors of p
associated with each product. We substitute the result of the expansion into
the term R (n)

h, p of (2.39). Define

A(M, N )
h, p (0, x)= :

N

n=0

, (n)
h, p(0, x)+ :

N

n=1

:
M

m=0

! (n, m)
h, p (0, x)

+ :
N

n=1

:
M+1

m=1

U (n, m)
h, p (0, x)+ :

N

n=1

S (n)
h, p(0, x)

+ :
N

n=1

u (n, M+1)
h, p (0, x)+r (N+1)

h, p (0, x) (2.67)

B(M, N )
h, p (0, x)= :

N

n=0

8 (n)
h, p(0, x)+ :

N

n=1

:
M

m=0

5 (n, m)
h, p (0, x) (2.68)

For each N, M�1, the result of the expansion is then

{h, p(0, x)=A(M, N )
h, p (0, x)+:

vn

B (M, N )
h, p (0, vn){h, p(vn , x) (2.69)

Under the high dimension assumptions of Theorem 1.1, existence of the
Fourier transforms of A (M, N )

h, p (0, x) and B (M, N )
h, p (0, x) will follow from

Lemmas 3.4, 3.6, and 4.6 below, leading to the conclusion that for p<pc ,
h�0, or for p= pc , h>0,

{̂h, p(k)=
A� (M, N )

h, p (k)

1&B� (M, N )
h, p (k)

(2.70)

In Section 4.2, we will take the limits M, N � � in (2.70), and in this
limit, the terms �N

n=1 û (n, M+1)
h, p (k) and r̂ (N+1)

h, p (k) in A� (M, N )
h, p (k) vanish. For

h=0, the set G of green sites is empty, and the events F3 , F4 , and F5 ,
which require connection to G, cannot occur. Therefore the terms involving
!, 5, S, U, and u all vanish for h=0, and (2.69) reduces to the expansion
of ref. 5.

3. BOUNDS ON THE TWO-POINT FUNCTION VIA THE ONE-M
SCHEME

In this section, we use the one-M scheme of the expansion to prove
upper and lower bounds on {̂h, pc

(k). The bounds involve the function

D� (k)=
1

|0|
:

x # 0

eik } x (3.1)
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where |0| denotes the cardinality of the set 0 of neighbors of the origin.
We will frequently write simply 0, rather than |0|. For the nearest
neighbor model, we have simply D� (k)=d &1 �d

j=1 cos kj , and for both the
nearest neighbor and spread-out models, 1&D� (k) is asymptotic to an
0-dependent multiple of k2 as k � 0. Useful bounds on D� (k) can be found
in [31, Appendix A].

Proposition 3.1. For the nearest neighbor model with d suffi-
ciently large, or for the spread-out model with d>6 and L sufficiently large
(depending on d ), there are positive constants K1 and K2 (independent
of L, d ), such that for h>0 and k # [&?, ?]d,

K1e&h

[1&D� (k)]+- 1&e&h
�{̂h, pc

(k)�
K2e&h

[1&D� (k)]+- 1&e&h
(3.2)

We treat the nearest neighbor and spread-out models simultaneously
in this section. To facilitate this, we will use * to denote a function of L or
of d which goes to zero as L � � or d � �. We will use O(*n) to denote
a quantity bounded by (K*)n, with K independent of h, p, n and of L
or d. We assume without further mention that henceforth d>>6 for the
nearest neighbor model, and d>6 and L>>1 for the spread-out model.

Our starting point for proving (3.2) is (2.40). Introducing the notation

\̂ (N+1)
h, p (k)= :

N+1

n=1

R� (n)
h, p(k)+ r̂(N+1)

h, p (k) (3.3)

(2.40) states that for any N�0, h>0,

{̂h, pc
(k)=

�N
n=0 ,� (n)

h, pc
(k)+\̂ (N+1)

h, pc
(k)

1&�N
n=0 8� (n)

h, pc
(k)

(3.4)

It will be a consequence of what follows that the limit N � � can be taken
in (3.4). The proof of (3.2) is organized as follows. In Section 3.1, we will
extract the leading terms from (3.4). The denominator of (3.4), and the con-
tribution �N

n=0 ,� (n)
h, pc

(k) to the numerator, will be bounded in Section 3.2.
The remainder term \̂ (N )

h, pc
(k) will be bounded in Section 3.3. At this point,

we will be able to take the limit N � �. The remainder term will be bounded
using Lemma 3.5, the ``cut-the-tail'' lemma, whose proof is deferred to
Section 3.5. The cut-the-tail lemma will also be used in Sections 4 and 5,
and in II. In Section 3.4, we combine the bounds obtained thus far, and
prove (3.2).
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In this section, we will use the infra-red bound (1.9) and the bound

1�pc0�1+O(*) (3.5)

both of which are due to ref. 5. For the nearest neighbor model, (3.5) was
improved in ref. 32.

3.1. The Main Contribution

We rewrite the n=0 terms of (3.4) as

,� (0)
h, p(k)=,� (00)

h, p (k)+,� (01)
h, p (k), 8� (0)

h, p(k)=8� (00)
h, p(k)+8� (01)

h, p (k) (3.6)

with

,� (00)
h, p (k)=(I[E $0(0, 0)])

(3.7)
,� (01)

h, p (k)= :
x{0

(I[E $0(0, x)]) eikx

8� (00)
h, p (k)= p :

(0, v0)

(I[E"0(0, 0, v0)]) eikv0

(3.8)

8� (01)
h, p (k)= p :

(u0 , v0) : u0{0

(I[E"0(0, u0 , v0)]) eikv0

The terms ,� (00)
h, p (k) and 8� (00)

h, p (k) are the leading ones. The former is given
simply by

,� (00)
h, p (k)=, (0)

h, p(0, 0)=(I[0 W% G]) =1&Mh, p (3.9)

For the latter, we have the following lemma.

Lemma 3.2. For p�pc , h�0, and k # [&?, ?]d,

8� (00)
h, p (k)= p0[(1&Mh, p) D� (k)+O(*) Mh, p] (3.10)

8� (00)
h, p (0)&8� (00)

h, p (k)= p0[1&D� (k)][1&Mh, p+O(*) Mh, p] (3.11)

Proof. We first note that (3.10) would follow immediately from

(I[E"0(0, 0, v0)])=1&Mh, p+O(*) Mh, p (3.12)

To prove (3.12), we begin by observing that

(I[E"0(0, 0, v0)])=P(C� [0, v0](0) & G=<)

=P(C(0) & G=<)+[(P(C� [0, v0](0) & G=<)

&P(C(0) & G=<)] (3.13)
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The first term on the right side equals 1&Mh, p . The second term is the
probability that [0, v0] is occupied and pivotal for the event [0 W G], and
is bounded by pP(v0 W G)= pMh, p . With (3.5), this proves (3.12).

Finally, (3.11) follows from substitution of (3.12) into

8� (00)
h, p (0)&8� (00)

h, p (k)= p :
(0, v0)

(I[E"0(0, 0, v0)])[1&cos(k } v0)] K (3.14)

3.2. Standard Diagrammatic Estimates

In this section, we obtain bounds on the subdominant terms ,� (n)
h (k)

and 8� (n)
h (k), for n�1 and n=01. The bounds are standard, in the sense

that they do not require methods beyond those used in ref. 5. They are
based on bounds for simple polygonal diagrams, and we begin by review-
ing these bounds.

For p # [0, pc] and h�0, we define the polygon and weighted polygon
diagrams:

P (m)
h, p(x)= :

y1 , y2 ,..., ym&1 # Zd

{h, p(0, y1) {h, p( y1 , y2) } } } {h, p( ym&1 , x)

&$0, x[{h, p(0, 0)]m (3.15)

W (m)
h, p(x)= :

y1 , y2 ,..., ym&1 # Zd

| y1 | 2 {h, p(0, y1) {h, p( y1 , y2) } } } {h, p( ym&1 , x)

(3.16)

The second term of P(m) just subtracts the y1= y2= } } } = ym&1=x=0
term from the sum, and thus P(m) can be rewritten as a sum of products
of {h, p 's, with positive coefficients. The following lemma gives bounds on
these quantities.

Lemma 3.3. For p # [0, pc], h�0, and * sufficiently small,

sup
x

P (m)
h, p(x)�O(*) for d>2m (3.17)

sup
x

W (m)
h, p(x)�O(*) for d>2m+2 (3.18)

Proof. For h�0, by (1.2) we have 0�{h, p(0, x)�{0, p(0, x).
Therefore, P(m)

h, p(x) and W (m)
h, p(x) are dominated by their values at h=0.

Also, P (m)
0, p(x) and W (m)

0, p(x) are monotone nondecreasing in p, since
{0, p(0, x) is. Thus we need only bound their values at h=0 by O(*),
uniformly in p<pc and in x, to establish the lemma.
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It was shown in ref. 5 that P(3)
h, p(x) and W (2)

h, p(x) are O(*) for h=0,
uniformly in p<pc and in x. The method involved writing these quantities
in terms of the Fourier transform of the two-point function and using the
infra-red bound (1.9). The same method can be used for general m, yielding
the lemma. K

We now turn to bounds on ,� (n)
h, p(k) and 8� (n)

h, p(k). To discuss the cases
n=01 and n�1 simultaneously, we introduce the notation

n� ={1
n

n=01
n�1

(3.19)

The following lemma gives bounds on the subdominant ,� (n)
h, p(k) and

8� (n)
h, p(k) corresponding to these values of n.

Lemma 3.4. For h�0 and p # [0, pc], and for n=01 or n�1, we
have

|,� (n)
h, p(k)|�O(*n� ) e&h(n� +1)

(3.20)
|,� (n)

h, p(0)&,� (n)
h, p(k)|�O(*n� ) e&h(n� +1)[1&D� (k)]

|8� (n)
h, p(k)|�p0O(*n� ) e&h(n� +1)

(3.21)
|8� (n)

h, p(0)&8� (n)
h, p(k)|�p0O(*n� ) e&h(n� +1)[1&D� (k)]

and

|8� (n)
0, p(0)&8� (n)

h, p(0)|�p0O(*n� ) Mh (3.22)

The remainder of Section 3.2 is devoted to the proof of Lemma 3.4.
The method of proof illustrates our basic strategy for bounding diagrams.
Because the proof is lengthy, we present it in several steps.

Explicit h-Dependence. We begin by making explicit the h-depen-
dence of quantities of interest. For this purpose, we define auxiliary events
which only depend on bond variables, with no h-dependence:

E $0, b(0, x)=[0 � x] (3.23)

E"0, b(0, u$, v$)=[0 � u$] occurs on C� [u$, v$](0) (3.24)

F $1, b(v, x; A)=[v �w�A x] & [_3 pivotal (u$, v$) for v W x s.t. v �w�A u$]
(3.25)

F"1, b(v, u$, v$; A)=[F $1, b(v, u$; A) occurs on C� [u$, v$](v)] (3.26)
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These are the events occurring in ref. 5. We denote by ( } ) s or Es the expec-
tation with respect to the site variables alone. Also we use ( } ) b or Eb to
denote expectation with respect to the bond variables. The joint expecta-
tion is then given by (( } ) s) b

By definition,

(I[E $0(0, u)]) s=I[E $0, b(0, u)] e&h |C(0)| (3.27)

(I[E"0(0, u$, v$)]) s=I[E"0, b(0, u$, v$)] e&h |C� [u$, v$](0)| (3.28)

(I[F $1(v, x)]) s=I[F $1, b(v, x)] e&h |C(v)| (3.29)

(I[F"1(v, u$, v$)]) s=I[F"1, b(v, u$, v$)] e&h |C� [u$, v$](v)| (3.30)

Recalling (2.23), we introduce the abbreviations

Yn, b=I[F1, b(vn&1 , x; C� n&1)], Y $n, b=I[F $1, b(vn&1 , x; C� n&1)]

Y"n, b=I[F"1, b(vn&1 , un , vn ; C� n&1)] (3.31)

We also write Cn=C(vn&1). Then we have

, (0)
h, p(0, x)=E0, b[I[E $0, b(0, x)] e&h |C0 |] (3.32)

, (n)
h, p(0, x)=(&1)n E0, bI[E"0, b] e&h |C� 0 | E1, bY"1, be&h |C� 1 |

_ } } } En&1, bY"n&1, b e&h |C� n&1 | En, bY $n, be&h |Cn | (3.33)

8 (0)
h, p(0, v0)= p :

u0

E0, b[I[E"0, b(0, u0 , v0)] e&h |C� 0 |] (3.34)

8 (n)
h, p(0, vn)=(&1)n p :

un

E0, bI[E"0, b ] e&h |C� 0 | E1, bY"1, be&h |C� 1 |

_ } } } En&1, bY"n&1, b e&h |C� n&1 | En, bY"n, be&h |C� n | (3.35)

Bounds Involving ,� (n). We begin with the simplest case n=01. For
x{0 we have

, (0)
h, p(0, x)=E0, b[I[0 � x] e&h|C(0)|]�e&2hE0, bI[0 � x]�e&2h{0, p(0, x)2

(3.36)

using the BK inequality and |C(0)|�2. We thus have

|,� (01)
h, p(k)|� :

x{0

, (0)
h, p(0, x)� :

x{0

e&2h{0, p(0, x)2=e&2hP (2)
0, p(0)=O(*) e&2h

(3.37)
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Similarly, using the lattice symmetry and (3.36) we obtain

,� (01)
h, p (0)&,� (01)

h, p (k)= :
x{0

, (0)
h, p(0, x)[1&cos k } x]

� :
x{0

, (0)
h, p(0, x)

k2x2

2d
�e&2h k2

2d
W (2)

0, p(0)

=O(*) e&2h[1&D� (k)] (3.38)

For n�1, each expectation in |,� (n)
h, p(k)| involves at least one factor

of e&h, since C or C� cannot be empty. Bounding each of these using
e&h |C� |�e&h, we obtain

, (n)
h, p(0, x)�e&h(n+1)E0, b I[E"0, b] E1, bY"1, b } } } En&1, b Y"n&1, b En, bY $n, b

(3.39)

The resulting bond expectation was treated in ref. 5, and can be bounded
using the critical triangle diagram P (3)

0, pc
, yielding

|,� (n)
h, p(k)|�O(*n) e&h(n+1) (n�1) (3.40)

Because similar diagrammatic estimates will be required repeatedly in the
rest of the paper, we recall the main ideas entering into the proof of (3.40).
Further details can be found in ref. 5. There are two main steps: (1) We
first bound the nested expectation in terms of {h, p , from right to left. The
original nested expectation is thus bounded by a sum of products of {h, p ,
which can be represented by diagrams. (2) We estimate the resulting
diagrams by decomposing into triangles.

Step 1: Bounds on Building Blocks. We bound the nested expec-
tation from right to left, starting with (Y $n, b) n, b . For this expectation, we
first note that

F $1, b(vn&1 , x; C� n&1)n/[vn&1 W x 6 v$n �ww�
C� n&1 x]]n (3.41)

where we used the subscript n to emphasize we are considering level-n
connections, and (u$n , v$n) denotes the last pivotal bond for the connection
vn&1 � x (if it does not exist, we set v$n=vn&1). This is a subset of the event

.
wn&1 , v$n # Zd

[F� $1, b(vn&1 , x, wn&1 , v$n)n & [wn&1 # C� n&1]] (3.42)
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where

In (3.43), we have introduced a suggestive diagrammatic notation for
events, in which thin lines represent disjoint connections between vertices.
Also, we write E b F to denote the disjoint occurrence of events E and F.

Now we continue to estimate (3.42), using the BK inequality. We have

where on the right side, thick lines represent factors of {0, p , and summa-
tion over Zd is implicit over the unlabelled vertex. This is the desired bound
on the level-n expectation.

Next, we consider the expectation at level-(n&1). Here we have two
conditions: the event F"1, b coming from Y"n&1, b , and the requirement
wn&1 # C� n&1 which has just been produced in the process of bounding the
level-n expectation. Our goal is to bound the right side of

(Y"n&1, bI[wn&1 # C� n&1]) n&1, b

�(I[vn&2 W un&1 6 v$n&1 �ww�
C� n&2 un&1 6 wn&1 # C� n&1]) n&1, b

This can be further bounded by the following (essentially, we add a con-
nection vn&2 W wn&1 to the diagram of (3.43)):
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By the BK inequality, this is bounded above by

This is the desired bound for level-(n&1).
The remaining expectations are bounded in a similar fashion, until we

reach level-0. Arguing as above, it is bounded by

Combining the above, we can bound ,� (n)
h, p(0) for any n. For example,

,� (2)
h, p(0) is bounded by the sum of two terms:

In the above, a pair of thick lines represents a (pivotal) bond, and summa-
tion over all unlabelled vertices, including pivotal bonds, is understood.
Each pivotal bond also carries a factor p.

Step 2: Decomposition of the Diagrams. For n=2, we illustrate
the method for estimating diagrams via a decomposition into triangles. The
basic tool is the simple inequality

:
x

f (x) g(x)�[sup
x

f (x)] :
x

g(x), for f (x), g(x)�0 (3.49)

Applying (3.49) and translation invariance, the first diagram (including the
summation) of (3.48) is bounded by
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By Lemma 3.3, the factors on the right side obey

Thus the first diagram of (3.48) is bounded by [1+O(*)]2 O(*)2=O(*2).
Similarly, the second diagram of (3.48) is bounded by

A similar analysis can be carried out for other values of n, leading to
(3.40).

Finally, we consider the bound on |,� (n)
h, p(0)&,� (n)

h, p(k)|. For this, we
write ,� (n)

h, p(0)&,� (n)
h, p(k)=�x , (n)

h, p(0, x)[1&cos(k } x)]. This is bounded
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above by (k2�2d ) �x x2, (n)
h, p(0, x), using the Zd-symmetry of , (n)

h, p(0, x). We
bound , (n)

h, p(0, x) as above. Now in step 2, we use both the triangle and
the weighted bubble diagrams at pc , together with the bound k2�2d�
?2[1&D� (k)] (see [31, Lemmas A.3, A.5]), with the result

|,� (n)
h, p(0)&,� (n)

h, p(k)|�O(*n) e&h(n+1)[1&D� (k)], (n�1) (3.56)

This completes the proof of (3.20).

Bounds Involving 8� (n). The bounds (3.21) on 8� can be obtained in
the same way. The only difference between ,� (n) and 8� (n) is in the level-n
expectation, which involves F $1 for ,� (n) and F"1=[F $1(vn&1 , un ; A) occurs
on C� n] for 8� (n). Since F1" is a subset of the event (3.42), the bounds for
,� (n) also apply for 8� (n), apart from a factor p0�1+O(*) due to the sum
over un+1 .

We turn now to the remaining bound (3.22), which involves the
extraction of a factor Mh, p . By definition,

8� (01)
0, p (0)&8� (01)

h, p (0)= p :
(u0 , v0) : u0{0

(I[E"0, b(0, u0 , v0)][1&e&h |C� (0)|]) b

(3.57)

This is bounded above by p �(u0 , v0) : u0{0 P(0 � u0 6 0 W G). But the event
in this expression is contained in the event that there is a w # Zd such that
[0 W u0] b [0 W w] b [w W u0] b [w W G], and hence, as required, (3.57) is
bounded by

p :
(u0 , v0) : u0{0

:
w

{0(0, w) {0(w, u0) {0(u0 , 0) Mh, p�p0O(*) Mh, p (3.58)

For n�1, we can proceed in a similar fashion. For simplicity, we
illustrate the argument for n=2, for which

8(2)
h, p(0, u2 , v2)=(I[E"0](Y"1(Y"2) 2) 1) 0 (3.59)

We begin by writing the difference 8 (2)
0, p(0, u2 , v2)&8 (2)

h, p(0, u2 , v2) as a
telescoping sum. To abbreviate the notation, we denote the nested expecta-
tion (3.59) by (0"1"2")h . Then

(0"1"2")h=0&(0"1"2")h=[(0"1"2")h=0&(0")h (1"2")h=0]

+[(0")h (1"2")h=0&(0"1")h (2")h=0]

+[(0"1")h (2")h=0&(0"1"2")h] (3.60)
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The three terms on the right side are treated similarly. For example, the
second term is given by

(0")h (1"2")h=0&(0"1")h (2")h=0

=(I[E"0, b] e&h |C� 0(0)| (Y"1, b(1&e&h |C� 1(v0)| )(Y"2, b) 2, b)1, b) 0, b (3.61)

The innermost expectation can be bounded, as in (3.44), by

In the middle expectation, the factor 1&e&h |C� 1(v0)| can be interpreted as a
requirement that C� 1(v0) should be connected to G, so that

(Y"1, b(1&e&h |C� 1(v0)| ) I[w1 # C� 1]) 1�(Y"1, b I[v0 W G 6 w1 # C� 1] ) 1 (3.63)

Using the bound of (3.45) for Y"1, bI[w1 # C� 1], this is bounded above by

Compared with (3.46), there is now an extra condition v0 W G. This
connection to G corresponds diagrammatically to the addition of a vertex
from which a connection to G emerges. We proceed as in the previous
diagrammatic bounds, using the BK inequality. A factor Mh, p arises from
the connection to G. This factor is multiplied by a sum of diagrams.
Explicitly, the diagrams are those obtained by adding an extra vertex to
any one of the fourteen lines in each of the two diagrams appearing on the
right side of (3.48). These diagrams can then be bounded in terms of the
triangle diagram, apart from a few cases where the triangle alone is insuf-
ficient to estimate the diagrams. Three such cases are depicted in Fig. 1,
together with resulting Feynman diagrams that cannot be reduced to tri-
angles. These irreducible diagrams can be bounded using the square
diagram for the nearest-neighbour model in sufficiently high dimensions.
For the spread-out model, we illustrate the argument for the leftmost
diagram in Fig. 1. This diagram results from construction 2 of Section A.2
applied to the triangle, and is therefore finite for d>6 by (A.14) and
Theorem A.1. Moreover, it converges to 1 as L � �, by an application of
the dominated convergence theorem as in [5, Lemma 5.9]. However, the
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Fig. 1. (a) Examples of diagrams arising in bounding (3.64). (b) Feynman diagrams arising
in bounding these diagrams.

contribution leading to the limiting value 1 arises from the case where the
lines in the Feynman diagram all contract to a point, and this contribution
was not present originally and need not be included in the bound. Thus the
diagram can be bounded by O(*2), where we increase * if necessary to
achieve this. The overall result is

|8� (2)
0, p(0)&8� (2)

h, p(0)|�O(*2) Mh, p (3.65)

Similar bounds can be obtained for general n�1, yielding the bound

|8� (n)
0, p(0)&8� (n)

h, p(0)|�O(*n) Mh (3.66)

of (3.22). This completes the proof of Lemma 3.4. K

The method of proof of Lemma 3.4 also gives the bound

:
x

|x| 2 |8 (n� )
h, p(0, x)|�O(*n� ) (3.67)

Arguing as in the proof of Lemma 3.2, we also have

:
x

|x| 2 |8 (00)
h, p (0, x)|= p0(&{2

kD� (0))(1&Mh, p)+O(*) (3.68)

Therefore, for p�pc ,

&{2
k :

�

n=0

8� (n)
0, p(0)= p0(&{2

k D� (0))+O(*) (3.69)

3.3. The Cut-the-Tail Lemma and Bounds on the Remainder

The following lemma will be used to bound the remainder term
\̂(n)

h, p(k) of (3.3). It will be used again in Sections 4 and 5. The lemma is
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called the ``cut-the-tail'' lemma, because it is used to cut off a G-free con-
nection between two points, at a pivotal bond. Its proof is deferred to
Section 3.5.

Lemma 3.5. Let x be a site, [u, v] a bond, and E an increasing
event. Then for a set of sites A with A % u, and for p�pc , h�0 (assuming
no infinite cluster when (h, p)=(0, pc)),

(I[E occurs on C� [u, v](A)] {C� [u, v](A)
h, p (v, x)) �

1
1& pMh, p

P(E) {h, p(v, x)

(3.70)

The remainder of this section will be devoted to the proof of the
following lemma. The method of proof combines the cut-the-tail lemma
with standard diagrammatic estimates.

Lemma 3.6. For n�1, and for h�0, p<pc or h>0, p= pc ,

|R� ( j)
h, p(k)|�O(* j ) e&hj(/h, p+1) Mh, p , |r̂ (n)

h, p(k)|�O(*n) e&hn/h, p

(3.71)

and hence

| \̂ (n)
h, p(k)|�O(*) e&h(/h, p+1) Mh, p+O(*n) e&hn/h, p (3.72)

Proof. By definition, \ (n)
h, p(0, x)=�n

j=1 R ( j)
h, p(0, x)+r (n)

h, p(0, x), so it
suffices to prove (3.71). By definition,

R ( j)
h, p(0, x)=(&1) j&1 E0I[E"0] E1Y"1 } } } E j&1Y"j&1E jI[F2] (3.73)

r (n)
h, p(0, x)=(&1)n E0I[E"0] E1Y"1 } } } En&1 Y"n&1En Yn (3.74)

The term r (n)
h, p differs from , (n)

h, p only in the level-n expectation, which
is

(Yn) n=P(F1(vn&1 , x; C� n&1))=P(vn&1 �ww�
C� n&1 x 6 vn&1 W% G) (3.75)

Combining (2.25) and (2.26) gives

(Yn) n=(I[F $1(vn&1 , x; C� n&1)]) n

+ p :
(un , vn)

(I[F"1(vn&1 , un , vn ; C� n&1)] {C� n
[un , vn]

h, p (vn , x))n (3.76)
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We have already derived a bound on the first term, namely e&h times
(3.44).

For the second term of (3.76), we wish to employ Lemma 3.5. Because
F $1 is not increasing, due to its G-free condition, we first note that

F"1(vn&1 , un , vn ; C� n&1)

=[F $1(vn&1 , un , vn ; C� n&1) occurs on C� n]

/ .
wn&1 # C� n&1

v$n # Zd

[F� $1, b(vn&1 , un , wn&1 , v$n) occurs on C� n] (3.77)

The event F� $1, b(vn&1 , un , wn&1 , v$n) defined in (3.43) is an increasing event,
and we can apply the cut-the-tail lemma to obtain

(I[F"1(vn&1 , un , vn ; C� n&1)] {C� [un , vn]

h, p (vn , x))

�
1

1& pMh, p
:

wn&1 # C� n&1
v$n # Zd

P(F� $1, b(vn&1 , un , wn&1 , v$n) {h, p(vn , x) (3.78)

As a result, using (3.43) and the BK inequality for the second term of
(3.76),

Note that p(1& pMh, p)&1�pc(1& pc)&1=O(*). We use this and obtain a
bound for r̂ (n)

h, p(k) in terms of nested expectations. The resulting nested
expectation can be bounded as has been done for ,� (n)(k) in Section 3.2, and
the resulting diagrams are the same apart from a factor of /h, p arising from
the factor {h, p(vn , x) in (3.79). Thus we obtain

|r̂(n)
h, p(k)|�O(*n) e&h(n+1)+O(*n) e&hn/h, p=O(*n) e&hn/h, p (3.80)

The analysis is similar for R� ( j)
h, p , j�1. Here the level-j expectation is

the probability of the event F2(vj , x; C� j&1)=[vj W x in Zd "C� j&1 6

vj �ww�
C� j&1 G]. By Lemmas 2.6 and 2.7,
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(I[F2(v, x; A)])�(I[F3(v, x; A)])+(I[F4(v, x; A)])

= :
i=3, 4

_(I[F $i (v, x; A)])

+ p :
(u$, v$)

(I[F i"(v, u$, v$; A)] {C� [u$, v$](v)
h, p (v$, x))& (3.81)

In order to bound the above terms, we introduce an auxiliary increasing
event

and note that

F $3(v, x; A) _* F $4(v, x; A)/ .
w # A

F� $2(v, x, w) (3.83)

Thus the first term of (3.81) can be bounded by

For the second term, using an analogue of (3.77) to apply the cut-the-tail
lemma, we bound the expectation in the second term of (3.81) by

1
1& pMh, p

:
w # A

P(F� $2(v, u$, w)) {h, p(v$, x) (3.85)

As a result, we have a bound
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The rest of the work is routine. We have nested expectations with the
rightmost expectation bounded as above. We estimate the nested expecta-
tion from right to left as usual. The other expectations of Y"1 are dealt with
in the standard manner by using (3.46), and we extract a factor e&h from
each expectation except for the rightmost one. Since one new vertex w has
been added to the diagrams, the resulting diagrams can be bounded in
terms of the triangle diagram, to give

|R� ( j)
h, p(k)|�O(* je&hj ) Mh, p+O(* j ) e&hj/h, pMh, p

=O(* j ) e&hj(/h, p+1) Mh, p K (3.87)

3.4. Proof of Proposition 3.1 Completed

In this section, we prove Proposition 3.1. We fix p= pc throughout the
section, and usually drop the corresponding subscript from the notation.
We consider h>0, and continue to treat the nearest neighbor and spread-
out models simultaneously. We consider only d>6 and *<<1.

In view of Lemmas 3.4 and 3.6, we can take the limit N � � in the
expansion (3.4) to obtain

{̂h, pc
(k)=

,� h(k)+R� h(k)

1&8� h(k)
(3.88)

where

,� h(k)= :
�

n=0

,� (n)
h (k), R� h(k)= :

�

j=1

R� ( j)
h (k), 8� h(k)= :

�

n=0

8� (n)
h (k)

(3.89)

Note that the event F2(vn&1 , x; A) is empty when h=0, and therefore
R� ( j)

0, p(k)=0 for all p and j. For p<pc and h=0, (3.88) with k=0 is therefore
replaced by {̂0, p(0)=,� 0, p(0)[1&8� 0, p(0)]&1. Since limp A pc

{̂0, p(0)=�, by
the dominated convergence theorem we have

�=
,� 0, pc

(0)

1&8� 0, pc
(0)

(3.90)

Since ,� 0(0) and 8� 0(0) have been proven to be finite, we conclude that

8� 0(0)=1 (3.91)

The proof of (3.2) proceeds by obtaining upper and lower bounds for
each of the numerator and denominator of (3.88). The following lemma
provides a first step in this direction.
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Lemma 3.7. For p= pc , h>0, and k # [&?, ?]d,

,� h(k)+R� h(k)=1&Mh+O(*) e&h(/hMh+1) (3.92)

1&8� h(k)= pc0[[1+O(*)] Mh

+[1&Mh+O(*)(Mh+e&2h)][1&D� (k)]] (3.93)

Proof. We first prove (3.92). By (3.9) and (3.20),

:
�

n=0

,� (n)
h (k)=,� (00)

h (k)+,� (01)
h (k)+ :

�

n=1

,� (n)
h (k)=1&Mh+O(*) e&2h (3.94)

By Lemma 3.6, |��
j=1 R� ( j)

h (k)|�O(*) e&h(/h+1) Mh . Combining these
gives (3.92).

By (3.91),

1&8� h(k)=[8� 0(0)&8� h(0)]+[8� h(0)&8� h(k)] (3.95)

By (3.10) and (3.22),

8� 0(0)&8� h(0)= pc0Mh(1+O(*)) (3.96)

By (3.11) and (3.21),

8� h(0)&8� h(k)= pc0[1&Mh+O(*)(Mh+e&2h)][1&D� (k)] (3.97)

Combining (3.96) and (3.97) then gives (3.93). K

We handle the term in (3.92) involving the product /h Mh using the
following lemma.

Lemma 3.8. For p= pc , h>0,

/h Mh=[1+O(*)](1&Mh)+O(*)�1+O(*) (3.98)

Proof. Putting k=0 in Lemma 3.7, and using (3.5), gives

/h={̂h(0)=
1&Mh+O(*)(/h Mh+1)

Mh[1+O(*)]
(3.99)

We multiply both sides by Mh and solve for /h Mh , obtaining

/h Mh=[1+O(*)](1&Mh)+O(*) (3.100)

as required. K
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Using Lemma 3.8, we can now obtain good bounds on the magnetiza-
tion Mh .

Lemma 3.9. For p= pc and h>0,

e&h

2e
�1&Mh�e&h (3.101)

and

- K3(1&e&h)�Mh�- K4(1&e&h) (3.102)

with K3 and K4 independent of * and h.

Proof. For the upper bound of (3.101), we simply note that 1&Mh

=P(0 W% G)�P(0 � G)=e&h. The lower bound follows by first bounding
1&Mh below by the probability that 0 � G and all bonds emanating from
0 are vacant. This gives 1&Mh�e&h(1& pc)

0�e&h�2e, using (3.5) in the
last step.

The second bound requires more work. We first consider h such
that e&h� 1

2 . In this case, it follows from the upper bound of (3.101)
that 1

2�Mh�1, and (3.102) follows trivially from that. We therefore
restrict attention in what follows, without further mention, to h such that
e&h # ( 1

2 , 1).
By (3.98),

dM 2
h

dh
=2Mh /h=2(1+O(*))(1&Mh)+O(*) (3.103)

This gives the differential inequalities

c1&c2Mh�
dM 2

h

dh
�c3 (3.104)

where c1 , c2 , c3 are constants of the form 2+O(*).
We first integrate the upper bound, using M0=0, and find that

M2
h�c3h (3.105)

Using this in the lower bound of (3.104), we obtain

c1&c2 - c3h�
dM 2

h

dh
(3.106)
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Integration then gives

M2
h�c1 h& 2

3c2 - c3 h3�2�ch (3.107)

for some c>0. The desired bounds then follow from the fact that h is
bounded above and below by multiples of 1&e&h, for the range of h under
consideration. K

We are now in a position to prove (3.2), by applying Lemmas 3.8 and
3.9 to the estimates on the numerator and denominator of (3.88) given in
Lemma 3.7. For the numerator, using (3.101) and the uniform bound
(3.98) on /hMh , we obtain

[(2e)&1+O(*)] e&h�,� h(k)+R� h(k)�[1+O(*)] e&h (3.108)

This is sufficient for our needs.
Next, we derive an upper bound for the denominator, starting from

(3.93). Using (3.5), (3.101) and (3.102), we have

1&8� h(k)�[1+O(*)][Mh+[e&h+O(*) Mh][1&D� (k)]]

�[1+O(*)](- K4(1&e&h)+[1&D� (k)]) (3.109)

For the lower bound, it follows from (3.93), (3.5) and (3.101) that

1&8� h(k)�[1+O(*)][Mh+[(2e)&1 e&h+O(*) Mh][1&D� (k)]]

(3.110)

This implies

1&8� h(k)�const. [[1&D� (k)]+- 1&e&h] (3.111)

with the constant independent of * and h, as follows. When e&h # ( 1
2 , 1),

(3.111) follows from the lower bound of (3.102). When e&h # [0, 1
2], (3.110)

is bounded below by a constant since Mh� 1
2 , and (3.111) then follows.

Combining (3.108), (3.109) and (3.111) then gives (3.2).

3.5. Proof of the Cut-the-Tail Lemma

In this section, we prove Lemma 3.5. The proof makes use of the
following result.
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Lemma 3.10. Let p # [0, pc] and h�0 (assuming no infinite
cluster for (h, p)=(0, pc)). For an increasing event F,

P((F 6 v W% G) occurs on C� [u, v](v))

�
1

1& pMh, p
P(F occurs on C(v) 6 v W% G) (3.112)

Proof. To abbreviate the notation, we write F� for [F occurs on
C� [u, v](v)] and C� for C� [u, v]. We wish to bound the left side of (3.112) by
replacing C� (v) by C(v). To begin, we recall example (3) below Defini-
tion 2.2 and write the left side of (3.112) as

P(F� 6 C� (v) & G=<)

=P(F� 6 C(v) & G=<)+P(F� 6 C� (v) & G=< 6 C(v) & G{<)

(3.113)

Since F� /[F occurs on C(v)] for F increasing,

P(F� 6 C(v) & G=<)�P(F occurs on C(v) 6 C(v) & G=<) (3.114)

In the second term on the right side of (3.113), the event
[C(v) & G{<] can be replaced by the event [[u, v] is occupied 6

[u W G occurs in Zd"C� (v)]]. Hence we may apply Lemma 2.4 to this term.
After doing so, we bound P(u W G occurs in Zd"C� (v)) by Mh, p , to obtain

P(F� 6 C� (v) & G=< 6 C(v) & G{<)�pMh, pP(F� 6 C� (v) & G=<)

(3.115)

Combining (3.113)�(3.115), we have

P(F� 6 C� (v) & G=<)

�P(F occurs on C(v) 6 C(v) & G=<)+ pMh, pP(F� 6 C� (v) & G=<)

(3.116)

Solving (3.116) for P(F� 6 C� (v) & G=<) then gives the desired result. K

We are now able to prove the cut-the-tail lemma, which asserts that
for increasing E,

(I[E occurs on C� [u, v](A)] {C� [u, v](A)
h, p (v, x)) �

1
1& pMh, p

P(E ) {h, p(v, x)

(3.117)

1118 Hara and Slade



Proof of Lemma 3.5. We first note that by Lemma 2.4, the left side
of (3.117) can be written as

P(E occurs on C� (A) 6 (v W x 6 v W% G) occurs in Zd"C� (A)) (3.118)

When v W x occurs in Zd"C� (A), this in particular means that C� (A)%% v, and
thus C� (A) & C� (v)=<. We can then rewrite (3.118) as

P(E occurs on C� (A) 6 (v W x 6 v W% G) occurs in Zd"C� (A)

6 C� (v) & C� (A)=<) (3.119)

Because [v W x] and [v W% G] depend only on bonds�sites connected to v,
and because C� (v)/Zd"C� (A) when C� (A) & C� (v)=<, the above is equal to

P(E occurs on C� (A) 6 (v W x 6 v W% G) occurs in C� (v)

6 C� (v) & C� (A)=<) (3.120)

Since E is increasing, and recalling Definition 2.2(c), we have

[E occurs on C� (A) 6 C� (v) & C� (A)=<]/[E occurs on Zd"C� (v)]

=[E occurs in Zd"C� (v)] (3.121)

Recalling that ``occurs in'' and ``occurs on'' are the same for C� , (3.120) is
therefore bounded above by

P((v W x 6 v W% G) occurs on C� (v) 6 E occurs in Zd"C� (v)) (3.122)

Now by Lemma 2.4, the above quantity is equal to

(I[(v W x 6 v W% G) occurs on C� (v)](I[E occurs in Zd"C� (v)])) (3.123)

Finally, since E is increasing, this is bounded above by

P(E ) P((v W x 6 v W% G) occurs on C� (v)) (3.124)

The proof is completed by applying Lemma 3.10 to estimate the final factor
on the right side, noting that ``v W x occurs on C(v)'' can be replaced by
``v W x'' after applying the lemma. K

4. REFINED k-DEPENDENCE USING THE TWO-M SCHEME

In this section, we go part way to improving the bounds of Proposi-
tion 3.1 to the asymptotic statement of Theorem 1.1, using the two-M
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scheme for the expansion. In Section 4.2, we show that we can take
M, N � � in (2.70), and prove existence of the limit limh a 0 {̂h, pc

(k)
of Theorem 1.1. In Section 4.3, the numerator resulting from the limit
M, N � � in (2.70) will be shown to be equal to ,� 0, pc

(0)+oh(1)+O(k2).
In Section 4.4, we will extract the leading k2-dependence of the limiting
denominator of (2.70). This will prove (1.14). Extraction of the leading
h-dependence of the denominator will be postponed to Section 5.

We begin by presenting some new methods for bounding diagrams,
which will be required in both Sections 4 and 5.

4.1. Diagrammatic Methods

In this section, we describe two methods for estimating diagrams.
The first method involves an application of the dominated con-

vergence theorem, in a manner that will be used repeatedly. We illustrate
this method in the simplest example where it is useful.

Example 4.1. For p�pc , consider the sum

:
x, y # Zd

Ph, p((0 W x) b (x W y) b ( y W 0) 6 (0 W G)) (4.1)

Diagrammatically, the above event corresponds to a square with vertices
at 0, x, y, and a fourth vertex from which a connection to G emerges.
A naive estimate, which we do not want to use, would be to use BK to
bound the above sum by the square diagram 1+P(4)

h, p(0) times the
magnetization. This is a useless bound when p= pc and d�8, because the
square diagram then diverges. Instead, we use the dominated covergence
theorem, as follows. First, the probability in (4.1) is bounded above by
{0, pc

(0, x) {0, pc
(x, y) {0, pc

( y, 0), which is summable since the triangle
diagram is finite in sufficiently high dimensions for the nearest neighbor
model and for sufficiently spread-out models for d>6. On the other hand,
the above probability is also bounded by Mh, p , which goes to zero as
h � 0. It therefore follows from the dominated convergence theorem that

lim
h � 0

:
x, y # Zd

Ph, p((0 W x) b (x W y) b ( y W 0) 6 (0 W G))=0 (4.2)

As was just pointed out in Example 4.1, the square diagram is infinite
at the critical point, for d�8. However, there is a method for employing
a square diagram for d>6 when h>0, if at least one of the lines compris-
ing the square corresponds to {h, pc

(0, x). In this case, the square is finite for
all d>6, with a controlled rate of divergence, for d�8, as h � 0. The
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remainder of this section describes this observation in more detail, and sets
the stage for its use in our later diagrammatic estimates.

We begin with an elementary estimate for the integrals defined by

I (d )
m, n(h)=|

[&?, ?]d
d dk

1

(k2+- h)m (k2)n
(4.3)

with m, n�0 (not necessarily integers) and h�0.

Lemma 4.2. Let m, n�0. If d�2n, then I (d )
m, n(h)=� for all h�0.

As h � 0,

const. h(d&2(m+n))�4 2n<d<2(n+m)

I (d )
m, n(h)t{const. |log h| d=2(n+m), m>0 (4.4)

const. d>2(n+m)

Proof. For d�2n, I (d )
m, n(h)�(?2d+- h)&m �[&?, ?]d d dk k&2n=�.

For d>2(n+m), I (d )
m, n(h)�I (d )

m, n(0)=�[&?, ?]d d dk k&2(n+m)<�, and
by the monotone convergence theorem, limh � 0 I (d )

m, n(h)=I (d )
m, n(0).

For 2n<d<2(n+m), or for d=2(n+m) with m>0, the integral
diverges as h � 0 and its asymptotic behavior is given by that of the
integral over |k|�1. Switching to polar coordinates, and writing |d for the
solid angle in d-dimensions, this gives

I (d )
m, n(h)t|d |

1

0
dk

kd&1

(k2+- h)m k2n

t
|d

2
h(d&2(m+n))�4 |

h&1�2

0
dr

r(d&2)�2

(1+r)m rn (4.5)

where we made the change of variables r=k2h&1�2. The integral is finite as
h � 0 if 2n<d<2(n+m), and it diverges logarithmically if d=2(n+m)
with m>0. This completes the proof. K

We define the square diagram containing one G-free line, at p= pc , to
be

Sh= :
w, x, y # Zd

{h, pc
(0, w) {0, pc

(w, x) {0, pc
(x, y) {0, pc

( y, 0) (4.6)
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By the monotone convergence theorem, the Parseval relation, the upper
bound of Proposition 3.1 and the infra-red bound (1.9),

Sh= lim
p � pc

:
w, x, y # Zd

{h, pc
(0, w) {0, p(w, x) {0, p(x, y) {0, p( y, 0)

= lim
p � pc

|
[&?, ?]d

d dk
(2?)d {̂h, pc

(k) {̂0, p(k)3�const. I (d )
1, 3(h) (4.7)

It then follows immediately from Lemma 4.2 that Sh�O(h(d&8)�4) for
6<d<8, that Sh�O( |log h| ) for d=8, and that Sh=O(1) for d>8.

If we replace the basic quantity of Example 4.1 by

:
x, y # Zd

Ppc
(0 W x 6 0 W% G) Ppc

((x W y) b ( y W 0) 6 0 W G) (4.8)

then the naive estimate rejected in Example 4.1 can be used to bound (4.8)
above by ShMh, pc

. Using the bounds mentioned above for Sh and the
upper bound on the magnetization of Lemma 3.9, we have

h(d&6)�4 (6<d<8)

ShMh�O(h$(d )), where h$(d )={h1�2 |log h| (d=8) (4.9)

h1�2 (d>8)

We will obtain upper bounds similar to (4.8) by bounding a pair of
nested expectations. The probability involving the connection to G will
come from one expectation, and the probability involving the G-free con-
nection will come from a second expectation. To produce a bound in terms
of a probability of a G-free connection, we will use the generalization of the
BK inequality given in the following lemma.

Let E be an event specifying that finitely many pairs of sites are con-
nected, possibly disjointly. In particular, E is increasing. We say that E
occurs and is G-free if E occurs and the clusters of all the sites for which
connections are specified in its definition do not intersect the random set
G of green sites. The following lemma is a BK inequality for G-free connec-
tions, in which the upper bound retains a G-free condition on one part of
the event only.

Lemma 4.3. Let E1 , E2 be events of the above type. Then for h�0
and p # [0, 1],

P((E1 b E2) occurs and is G-free)�P(E1 occurs and is G-free) P(E2)

(4.10)
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Proof. Given an event F, we denote by [F]n the event that F occurs
in [&n, n]d. It suffices to show that

P([(E1 b E2) occurs and is G-free]n)

�P([E1 occurs and is G-free]n) P([E2]n) (4.11)

since (4.10) then follows by letting n � �. This finite volume argument is
used to deal with the fact that the usual BK inequality [17, Theorem 2.15]
applies initially to events depending on only finitely many bonds.

Given a bond-site configuration, we define C(G)n to be the set of sites
which are connected to the green set G in [&n, n]d. Conditioning on
C(G)n , we have

P([(E1 b E2) occurs and is G-free]n)

=:
#

P(C(G)n=# 6 [(E1 b E2) occurs and is G-free]n) (4.12)

where the sum is taken over all subsets # of sites in [&n, n]d. When
C(G)n=#, bonds touching but not in # are vacant and we can replace the
event [(E1 b E2) occurs and is G-free]n by [(E1 b E2) occurs in Zd"#]n .
Thus we have

P([(E1 b E2) occurs and is G-free]n)

=:
#

P(C(G)n=# 6 [(E1 b E2) occurs in Zd"#]n) (4.13)

Since the event [E1 b E2 occurs in Zd"#]n depends only on bonds and
sites in [&n, n]d which do not touch #, while the event C(G)n=# depends
only on bonds and sites which do touch #, the probability factors to give

:
#

P(C(G)n=#) P([(E1 b E2) occurs in Zd "#]n) (4.14)

Now we can apply the usual BK inequality (in the reduced lattice consist-
ing of bonds and sites in [&n, n]d which do not touch #) to the latter
probability, to obtain an upper bound

:
#

P(C(G)n=#) P([E1 occurs in Zd"#]n) P([E2 occurs in Zd "#]n)

(4.15)

1123Incipient Infinite Cluster in High-Dimensional Percolation



Since E2 is increasing, this is bounded above, as required, by

:
#

P(C(G)n=#) P([E1 occurs in Zd"#]n) P([E2]n)

=P([E1 occurs and is G-free]n) P([E2]n) K (4.16)

The two methods exemplified by Example 4.1 and by use of Sh will be
prominent in the diagrammatic estimates used in the remainder of this
paper. The latter method gives error estimates and is therefore stronger
than the former, which does not. However, when it does not affect our final
result, we will sometimes use the dominated convergence method when
stronger bounds in terms of Sh could also be obtained. We now illustrate
the methods with two examples, in which the quantity

Ah(k)=&:
x

eik } xpc :
(u0 , v0)

pc :
(u1 , v1)

(I[E"0(0, u0 , v0)](I[F"4(v0 , u1 , v1 ; C� 0)]

_{C� 1
h, pc

(v1 , x)) 1) 0 (4.17)

will be bounded at p= pc first using dominated convergence and then
using Sh . The term Ah(k) is a contribution to the Fourier transform
S� (1)

h, pc
(k) of the n=1 case of (2.64), via Lemma 2.7. We drop the subscripts

pc in the two examples.

Example 4.4. We now illustrate the use of dominated convergence
to conclude that Ah(k)=oh(1) if d>6 and *<<1. As a start, we take
absolute values inside the sum over x to obtain a k-independent upper
bound.

Step 1. The event F"4(v0 , u1 , v1 ; C� 0) is a subset of

F� "4(v0 , u1 , v1 ; C� 0)=F� 4(v0 , u1 , v1 ; C� 0) occurs on C� 1 (4.18)

where F� 4 is the increasing event that there exist w0 # C� 0 and w1 # C� 1 such
that there are disjoint connections v0 W w1 , w1 W G, w1 W u1 , u1 W w0 ,
w0 W G. Then we apply the cut-the-tail Lemma 3.5 to bound the inner
expectation in (4.17) by (1& pc Mh)&1 P(F� 4) {h(v1 , x).

Step 2. Next, we bound P(F� 4) by the probability that there exists
w0 # C� 0 such that there are disjoint connections v0 W u1 , u1 W w0 , w0 W G.
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Applying BK to bound this, and also to bound the outer expectation, this
leads to an upper bound for |Ah(k)| by

In the above, the factor O(*) arises as in (3.52), and we used Lemma 3.8
to bound Mh/h .

Step 3. Since the summand of (4.17) is bounded above by
(1& pcMh)&1 P(F� 4)�O(M 2

h)=O(h), it goes to zero pointwise as h � 0.

Step 4. By Steps 2 and 3 and the dominated convergence theorem,
(4.17) is oh(1).

Example 4.5. We now illustrate the use of Lemma 4.3 to conclude
that Ah(k)=O(h$(d )).

Step 1. We first apply the cut-the-tail lemma as in Step 1 of
Example 4.4.

Step 2. We wish to extract a G-free line from the connections
required by E"0 , but there is a subtlety associated with the fact that C0 is
only required to be G-free on C� 0 . The following device will allow this to be
handled. Let ( } )t denote the conditional expectation, under the condition
that [u0 , v0] is vacant. By the definition of ``occurs on C� '' in Defini-
tion 2.2(c), we can rewrite the nested expectation appearing in (4.17) as

(I[E $0(0, u0 , v0)](I[F"4(v0 , u1 , v1 ; C0)] {C� 1
h, pc

(v1 , x)) 1) t

0 (4.20)

Here, in particular, we have used the fact that C� [u0 , v0]
0 (0)=C0(0) when

[u, v] is vacant. We apply the BK inequality to estimate P(F� 4), this time
extracting all the disjoint connections. As a result, |Ah(k)| can now be
bounded by

1
1& pcMh

:
x, w0 , w1

pc :
(u0 , v0)

pc :
(u1 , v1)

(I[E $0(0, u0 , v0)] I[w0 # C0]) t

_{0(v0 , w1) {0(w1 , u1) {0(u1 , w0) M 2
h {h(v1 , x) (4.21)

Step 3. The remaining conditional expectation involves disjoint con-
nections 0 W u0 , 0 W w, w W u0 , w W w0 , all G-free, for some w. Lemma 4.3
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can be used to bound this conditional expectation by {0(0, u0) {0(0, w) {0(w, u0)
times (I[w W w0 , w W% G]) t, using a slight generalization of Lemma 4.3
to conditional probabilities, and the fact that (I[a W b]) t�{0(a, b).
Now, for any event E,

P(E)�P(E 6 [u, v] is vacant)=(1& pc)(I[E]) t (4.22)

Using (4.22) in (4.21), this leads to an upper bound for (4.17) by O(/hM 2
h)

times the diagram

where thick lines represent {0 and the dotted line represents {h . This
diagram is bounded above by the triangle times Sh , leading to an overall
bound O(/hM 2

hSh)=O(h$(d )), which is stronger than the bound obtained
in Example 4.4.

4.2. The Two-M Scheme to Infinite Order

In this section, we fix p= pc and drop subscripts pc from the notation.
The bounds of Lemma 4.6 below, together with the estimates for ,� (n)

h (k)
and 8� (n)

h (k) obtained in Section 3, imply that we can take the limit
M, N � � in (2.70), obtaining

{̂h(k)=
,� h(k)+!� h(k)+U� h(k)+S� h(k)

1&8� h(k)&5� h(k)
(4.24)

On the right side, we introduced ,� h(k)=��
n=0 ,� (n)

h (k), !� h(k)=
��

n=1 ��
m=0 !� (n, m)

h (k), U� h(k)=��
n=1 ��

m=1 U� (n, m)
h (k), S� h(k)=��

n=1 S� (n)
h (k),

8� h(k)=��
n=0 8� (n)

h (k), 5� h(k)=��
n=1 ��

m=0 5� (n, m)
h (k). Absolute convergence

of the sums is guaranteed by Lemma 4.6.
Moreover, it follows from Lemma 4.6 that !� h(k), U� h(k), S� h(k) and

5� h(k) vanish in the limit h a 0. Since limh a 0 ,� h(k)=,� 0(k) and limh a 0 8� h(k)
=8� 0(k) by (3.32)�(3.35), Lemma 3.4 and the dominated convergence
theorem, it follows that

lim
h a 0

{̂h, pc
(k)=

,� 0, pc
(k)

1&8� 0, pc
(k)

(4.25)

This proves existence of the limit stated in Theorem 1.1.
In addition, Lemma 4.6 will provide some of the estimates to be used

in the asymptotic analysis of the numerator and denominator of (4.24).
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Lemma 4.6. For h�0, p= pc , k # [&?, ?]d, and for all n, m�0,

:
x

|! (n, m)
h (0, x)|, :

x

|5 (n, m)
h (0, x)|�O(*n+m) h1�2 (4.26)

:
x

|u (n, m)
h (0, x)|�O(*n+m) (4.27)

:
x

|S (n)(0, x)|�O(*n) O(h$(d )) (4.28)

:
x

:
n, m

|U (n, m)
h (0, x)|�oh(1) (4.29)

Proof. Each of the the above quantities is given in (2.60)�(2.66) by
a nested expectation in which one of the expectations involves the factor
W$ or W" defined in (2.53)�(2.55), or a factor of F4 . In bounding them,
we take absolute values and bound the difference in W$ or W" using the
triangle inequality. The absolute values are taken inside the sum over x
defining the Fourier transform, using |eik } x|�1. This gives bounds uniform
in k.

Our general strategy is the same as that in Section 3, which is to bound
nested expectations from right to left, and then decompose the resulting
diagram having lines {0, pc

or {h, pc
into triangles and squares. In the follow-

ing, we comment on the special features relevant for each quantity.

Bounds on !� (n, m)
h and 5� (n, m)

h . These two terms are almost the same,
and we discuss only !� (n, m)

h . We begin with ! (n, 0)
h , which is bounded by

!(n, 0)
h (0, x)�E0I[E"0] E1Y"1 } } } En&1 Y"n&1En(I[(F $3)n]+I[(F $5)n]) (4.30)

where (F $j)n denotes the event F $j on level-n. The rightmost expectation can
be bounded using BK by
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The other expectations involve Yj" and have already been bounded by
(3.46). The overall result is diagrams which are either given by the
diagrams that bound ,� h(k) in Section 3.2, but with an additional vertex
added in the penultimate loop, or by the diagrams that arose in bounding
R� h(k) in Section 3.3. These diagrams all have critical dimension 6 (see (A.5))
and are O(*n).

The bounds on ! (n, m)
h for m�1 are similar. We estimate expectations

from right to left, as usual. The estimate of the expectation at level-(n+1)
introduces a factor I[wn # C� n], and we wish to bound

( (W")n I[wn # C� n]) n

�(I[F $3 occurs on C� n 6 wn # C� n]+I[F $5 occurs on C� n 6 wn # C� n]) n

(4.32)

This is bounded by

which is bounded by

In the above, we used the fact that v$n&1 � un through C� n&1 , so that we can
choose wn&1 on either side of the two disjoint paths connecting v$n&1 and un .
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Combined with the bound (3.46) on Yj", the result can be seen to be bounded
by diagrams with critical dimension 6. Bounding these diagrams in terms
of triangles yields

:
x

|! (n, m)
h (0, x)|�O(*n+m) Mh (4.35)

Bound on û(n, m)
h . The term û (n, m)

h is almost the same as the term r (n)
h

bounded in Section 3.3, except that û (n, m)
h contains W" rather than Y" in

one internal expectation. The bounds proceed exactly as in the proof of
Lemma 3.6, except that (4.34) is used for the level-n expectation. The
bound on the level-n expectation introduces an additional vertex, com-
pared to the bound on r (n)

h , which raises the critical dimension to 6. This
leads to

:
x

|u (n, m)
h (0, x)|�O(*n+m) Mh /h=O(*n+m) (4.36)

where in the last step we used the bound /hMh=O(1) of Lemma 3.8.

Bound on S� (n)
h . We bound S� (n)

h in the manner illustrated for the case
n=1 in Example 4.5. In this method, a G-free line is extracted from the
level-(n&1) expectation. The result is

:
x

|S (n)
h (0, x)|�O(*n) O(h$(d )) (4.37)

Since Example 4.5 involved the extraction of a G-free line from the
level-0 expectation, we now describe in more detail how the corresponding
step is performed for the level-(n&1) expectation, when n>1. When n>1,
after bounding the level-n expectation, the level-(n&1) expectation is given by
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using the conditional expectation introduced in Example 4.5. Using Lemma
4.3 to bound the above by corresponding diagrams, this gives

where the thick solid lines represent {pc
, and the dotted lines represent

{h, pc
, both in the conditional expectation with [un&1 , vn&1] vacant. The

conditional expectation can then be handled as in Example 4.5. An example
of a typical diagram arising in bounding S� (4) is

The resulting bound is

:
x

|S (n)
h (0, x)|�/h M 2

hSh O(*n)=O(*n) O(h$(d )) (4.41)

Bound on U� (n, m)
h . This bound is the most involved one. By defini-

tion, U (n, m)
h contains one W" at level-n and one F2 at level-(n+m). The

bounds (4.34) on W" and (3.86) on F2 each introduce an additional vertex,
and when combined, give rise to a diagram with critical dimension 8. For
some of the diagrams, we can use the method of Example 4.5, but for
others we are unable to extract a G-free line to compensate for a sub-
diagram with critical dimension 8 and we must resort instead to the
dominated convergence method of Example 4.4.

We first consider the case m�2, for which there is at least one expec-
tation of Yj" occuring between the level-n expectation of W" and the level-
(n+m) expectation of F2 . This allows us to use the bound (4.39) on Yj"
involving one G-free line, for one of the expectations between levels-n and
(n+m). The resulting diagrams can be bounded in terms of Sh and
n+m&1 triangles, with each triangle contributing O(*). A typical diagram
contributing in this case is
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This gives the bound

:
x

|U (n, m)
h (0, x)|�O(*n+m&1) Sh M 2

h/h

�O(*n+m&1) O(h$(d )) (m�2) (4.43)

Next, we consider the case m=1, in which W" and F2 appear in the
two innermost expectations. For the innermost expectation of F2 , we use
(3.86) (with the shift j � n+1 in indices). To bound W" on level-n, we use
(4.33), and give two separate arguments, one for the first and sixth terms
on the right side of (4.33), and one for the second through fifth terms.

The contributions from the second through fifth terms of (4.33) can be
handled using the bound (4.39) to estimate Y"n&1. The resulting diagrams
can be bounded above by Sh and n triangles, yielding an overall bound by
O(*nSh M 2

h /h)=O(*n) O(h$(d )). However, this method does not apply to
the first and sixth terms of (4.33), because it leads to diagrams in which a
square subdiagram arises from the innermost expectation in such a way
that we cannot extract a G-free line to produce Sh . An example is the
diagram

For these remaining two cases, we use the dominated convergence
theorem. As an upper bound, we neglect the connection to G required by W",
to obtain

This leads to diagrams with critical dimension 6, which are O(*n).
However, each term with fixed x is a huge sum over various vertices and
pivotal bonds. Having fixed all of them, the summand, being a nested
expectation of an indicator function, and having a connection to G, is
bounded above by Mh . In particular, it goes to zero pointwise as Mh � 0.
Hence, by the dominated convergence theorem, the sum over n of these
contributions is bounded by /hMhoh(1)=oh(1).
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Combining the above yields the bound

:
x

:
m, n

|U (n, m)
h (0, x)|�oh(1) (4.46)

This completes the proof of Lemma 4.6. K

4.3. Asymptotic Behavior of the Numerator

Fix p= pc . We now apply the bounds of Lemma 4.6 to prove that the
numerator of (4.24) is given by

,� h(k)+!� h(k)+U� h(k)+S� h(k)=,� 0(0)+oh(1)+O(k2) (4.47)

The constant ,� 0(0) is equal to 1+O(*), by (3.9) and Lemma 3.4.
Summation of (4.26) and (4.28) over m, n, together with (4.29), gives

|!� h(k)+U� h(k)+S� (k)|�oh(1). To prove (4.47), it therefore suffices to show
that

,� h(k)=,� 0(0)+O(h1�2)+O(k2) (4.48)

For this, we make the decomposition

,� h(k)=,� 0(0)&[,� 0(0)&,� h(0)]&[,� h(0)&,� h(k)] (4.49)

The second term of (4.49) is O(Mh), by (3.9) and the analogue of (3.22) for
,� h(0). The third term is O(k2), by (3.9) and (3.20). This proves (4.47).

4.4. k-Dependence of the Denominator

Fix p= pc . Since 8� 0(0)=1 by (3.91), the denominator of (4.24) can be
written as

1&8� h(k)&5� h(k)

=[8� h(0)&8� h(k)]+[5� h(0)&5� h(k)]+[8� 0(0)&8� h(0)&5� h(0)]

(4.50)

The last term is independent of k and will be treated in Section 5 using the
second expansion. In this section, we prove that

5� h(0)&5� h(k)=ok(1) h1�2 (4.51)

8� h(0)&8� h(k)= &{2
k 8� 0(0)

k2

2d
+ok(1) k2+oh(1) k2 (4.52)
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This shows that the second term in (4.50) is an error term, and extracts the
leading k2-dependence of the first term. The constant &{2

k8� 0(0) of (4.52)
was seen to be finite and positive in (3.69).

Proof of (4.51). By the triangle inequality,

h&1�2 |5� h(0)&5� h(k)|� :
�

n=1

:
�

m=0

:
x

h&1�2 |5 (n, m)
h (x)| |1&cos(k } x)|

(4.53)

It was shown in Lemma 4.6 that h&1�2 �x |5 (n, m)
h (x)|�O(*n+m). Thus the

right side is summable, uniformly in h and k. On the other hand, the sum-
mand on the right side goes to zero as k � 0. The dominated convergence
theorem then gives (4.51). K

Proof of (4.52). We begin with the decomposition

8� h(0)&8� h(k)=[8� 0(0)&8� 0(k)]&[[8� 0(0)&8� 0(k)]&[8� h(0)&8� h(k)]]

(4.54)

The first term on the right side can be written as

8� 0(0)&8� 0(k)=&{2
k8� 0(0)

k2

2d
+k2 :

x

80(0, x) k&2 \1&cos(k } x)&
(k } x)2

2 +
(4.55)

since the first term and the contribution to the second term from &(k } x)2�2
cancel by symmetry. The summand of the second term is bounded
uniformly in k by a summable function of x, since k&2 |1&cos(k } x)&
1
2 (k } x)2|�O(x2) and �x x2 |8(0, x)|<� by (3.67)�(3.68). Since
k&2[1&cos(k } x)&((k } x)2�2)] � 0 pointwise in x as k � 0, the second
term of (4.55) is ok(1) k2 by the dominated convergence theorem. Therefore

8� 0(0)&8� 0(k)=&{2
k8� 0(0)

k2

2d
+ok(1) k2 (4.56)

The absolute value of the second term on the right side of (4.54) is
bounded above by

:
x

|[80(0, x)&8h(0, x)](1&cos(k } x))|

�
k2

2d
:
x

:
�

n=0

|x|2 |8 (n)
0 (0, x)&8 (n)

h (0, x)| (4.57)
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By (3.34)�(3.35), the summand on the right side goes to zero pointwise as
h � 0, and it is bounded by |x|2 |8 (n)

0 (0, x)|, which is summable in x, n by
(3.67)�(3.68). It therefore follows from the dominated convergence theorem
that

|[8� 0(0)&8� 0(k)]&[8� h(0)&8� h(k)]|�oh(1)
k2

2d
(4.58)

Equation (4.52) then follows from (4.58) and (4.56). K

Equation (1.14) of Theorem 1.1 is now an immediate consequence of
(4.25), (4.48) and (4.52), with CD&2 equal to ,� 0(0)[&(1�2d ) {2

k8� 0(0)]&1.

5. THE SECOND EXPANSION AND REFINED h-DEPENDENCE

We will now complete the proof of Theorem 1.1, by establishing
(1.12). We fix p= pc , and drop subscripts pc from the notation. We assume
without further mention that d>>6 for the nearest neighbor model, and
that d>6 and L>>1 for the spread-out model.

5.1. The Refined h-Dependence

It already follows from (4.47) and (4.50)�(4.52) that {̂h(k) has numerator
,� 0(0)+oh(1)+O(k2) and denominator

&(1�2d ) {2
k8� 0(0) k2[1+ok(1)+oh(1)]

(5.1)
+ok(1) h1�2+[8� 0(0)&8� h(0)&5� h(0)]

It therefore suffices to show that

8� 0(0)&8� h(0)&5� h(0)=h1�2[K+oh(1)] (5.2)

for some positive constant K. Equation (1.12) then follows, with

C=23�2K&1,� 0(0), D2=&
1

2d
{2

k8� 0(0) 23�2K &1 (5.3)

These are positive constants, since ,� 0(0)=1+O(*) as explained below
(4.48), and &{2

k8� 0(0) is positive by (3.69). These values for C and D&2 are
consistent with the identification of CD&2 at the end of Section 4.4.

Equation (5.2) will be a consequence of the following two propositions.
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Proposition 5.1. There is a positive constant K1 , with K1=
1+O(*), such that for h>0,

&
d

dh
8� h(0)=[K1+oh(1)] /h (5.4)

Proposition 5.2. There is a constant K2 , with |K2 |�O(*), such
that for h>0,

&5� h(0)=[K2+oh(1)] Mh (5.5)

Proof of (5.2) assuming Propositions 5.1 and 5.2. The two
propositions imply that

8� 0(0)&8� h(0)&5� h(0)

=|
h

0
[K1+ou(1)] /u du+[K2+oh(1)] Mh=[K1+K2+oh(1)] Mh

(5.6)

To prove (5.2), it therefore suffices to show that Mh=[const.+oh(1)] h1�2.
To see this, we note that by (5.6), (4.47) and (4.50),

/h={̂h(0)=
,� 0(0)+oh(1)

[K1+K2+oh(1)] Mh
(5.7)

Therefore

dM 2
h

dh
=2Mh /h=2,� 0(0)(K1+K2)&1+oh(1) (5.8)

and hence, by integrating and then taking the square root, we have the
desired result

Mh=[(2,� 0(0))1�2 (K1+K2)&1�2+oh(1)] h1�2 (5.9)

The constant K of (5.2) is therefore given by

K2=2,� 0(0)(K1+K2)=2+O(*) (5.10)

and (5.2) is proved. K
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The proofs of Propositions 5.1 and 5.2 are similar, and both involve
the use of a second expansion. Before discussing the second expansion for
the derivative of 8� h(0) in detail, we begin by considering the leading
contribution.

5.2. Leading Behavior of the h-Derivative of 8� h(0)

By definition, 8h(0, x)=��
j=0 8 ( j)

h (0, x), with the j th term in the sum
given by (2.35)�(2.36). The leading behavior of 8h(0, x) is given by the
j=0 term

8 (0)
h (0, v0)= pc :

u0 : v0&u0 # 0

(I[E"0(0, u0 , v0)]) (5.11)

By definition,

&
d
dh

(I[E"0(0, u0 , v0)]) =( |C(0)| I[0 � u0] e&h |C(0)|) t

=:
y

(I[0 W y 6 0 � u0 6 0 W% G]) t (5.12)

where we are using the notation introduced in Example 4.5 in which ( } ) t

denotes expectation conditional on [u0 , v0] being vacant. We may now
proceed to derive an expansion for the connection 0 W y, as in the argu-
ment leading up to (2.39).

For this, we introduce

L$0(0, u0 , a0)=E $0(0, u0) & [0 � a0] (5.13)

L"0(0, u0 , a0 , b0)=L$0(0, u0 , a0) occurs on C� [a0 , b0](0) (5.14)

As in (2.14), the right side of (5.12) can be seen to be given by

:
y

(I[L$0(0, u0 , y)]) t+:
y

pc :
(a0 , b0)

(I[L"0(0, u0 , a0 , b0)] {C� [a0 , b0](0)
h (b0 , y))t

(5.15)

Initially, the restricted two-point function in the second term should be
with respect to the conditional expectation ( } ) t (conditional on [u0 , v0]
vacant) rather than the usual expectation. However, there is no difference
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between the two expectations here, since u0 # C� [a0 , b0](0) when L"0(0, u0 ,
a0 , b0) occurs. Now we proceed as in the derivation of the one-M scheme
of the expansion. The result is

&
d

dh
8 (0)

h (0, v0)=U (0)
h (0, v0)+V (0)

h (0, v0) /h+E (0)
h (0, v0) (5.16)

where

U (0)
h (0, v0)=:

y

pc :
u0 # v0&0

(I[L$0(0, u0 , y)]) t

+:
y

:
�

l=1

(&1)l E� 0I[L"0] E1 Z"1 } } } El&1Z"l&1El Z$l (5.17)

V (0)
h (0, v0)=:

y

pc :
u0 # v0&0

(I[L"0(0, u0 , y)]) t

+:
y

:
�

l=1

(&1)l E� 0I[L"0] E1Z"1 } } } El&1 Z"l&1El Z"l (5.18)

E(0)(0, v0)=:
y

:
�

l=1

(&1)l&1 E� 0I[L"0] E1Z"1 } } } El&1 Z"l&1

_El I[F2(bl&1 , y; C� l&1)] (5.19)

with

Z$l=I[F $1(bl&1 , y; C� l&1)], Z"l=I[F"1(bl&1 , al , bl ; C� l&1)] (5.20)

and sums with factors pc tacitly understood as in the first expansion. The
bounds on these terms are the same as for the first expansion, except that
now there is an additional summed vertex u0 on the diagrammatic loop
corresponding to the leftmost expectation. The diagrams in the first expan-
sion, occuring for , or 8, have critical dimension 6 after adding an addi-
tional vertex. As we will discuss more generally in Section 5.4, the methods
of Sections 3 and 4.1 then justify our having already taken the expansion
to infinite order in (5.16), and imply that U� (0)

h (0) and V� (0)
h (0) are O(1) and

that the error term E� (0)
h (0) is lower order than /h . Therefore

&
d

dh
8� (0)

h (0)=[V� (0)
h (0)+oh(1)] /h (5.21)
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5.3. Differentiation of 8� h(0)

In general, when 8� (N )
h (0) is given by an (N+1)-fold nested expecta-

tion, the result of the differentiation will not be as simple as it was for the
case N=0. By the product rule, the differentiation of a nested expectation
will give rise to a sum of terms with one of the nested expectations differen-
tiated in each term. Typically, we are differentiating the n th expectation in
an expression of the form

8� (N )
h (0)=(&1)N E0I[E"0] E1Y"1 } } } En&1 Y"n&1En Y"n

_En+1Y"n+1En+2 Y"n+2 } } } ENY"N (5.22)

Writing out the h-dependence of the n th expectation explicitly, and, for
later convenience, switching to the conditional expectation of Example 4.5
for the n th and (n\1)st expectations, gives

8� (N )
h (0)=(&1)N E0 I[E"0] E1Y"1 } } } E� n&1 Y $n&1E� n Y $n, be&h |Cn |

_E� n+1 Y $n+1En+2Y"n+2 } } } ENY"N (5.23)

The effect of applying &(d�dh) to the factor e&h |Cn | is simply to multi-
ply by |Cn |, and this new factor can be represented by �y # Zd I[ y # Cn].
The expression is otherwise unchanged. It is just as easy to work with y
fixed, rather than summed, and so we postpone the summation over y until
the last step. Diagrammatically, the connection to y presents the usual
diagrams for 8� (N )

h (0), with a new line joining the diagram to y. If that line
were independent of the rest of the diagram, we could factor the expecta-
tion to obtain a diagram of 8� (N )

h (0) with an additional vertex a$, multiplied
by {h(a$, y), and summed over a$. Since the diagrams with additional vertex
have critical dimension 6, summing over y would yield the desired result
const. /h for the derivative, with the constant O(*N). Of course, this
presumed independence is not actually present, and we must perform an
expansion in order to factor out the two-point function. This is the role of
the second expansion. We will perform the second expansion using the one-
M scheme of Section 2.2.

The result will be of the form

&
d

dh
8� (N )

h (0)=U� (N )
h (0)+V� (N )

h (0) /h+E� (N )
h (0) (5.24)

Each of the three terms on the right side will turn out to involve a factor
O(*N), to allow the sum over N to be performed. It will also turn out that
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U� (N )
h (0) and V� (N )

h (0) are bounded uniformly in h, and that E� (N )
h (0) diverges

more slowly than /h .
The first step in the second expansion is the identification of a suitable

pivotal bond at which to sever the connection to y. We begin by applying
Fubini's theorem to interchange the n th and (n+1)st (bond�site) expecta-
tions, and regard the clusters Cn\1 as being fixed. The occurrence of the
events (F $1) l on levels l=n&1, n, n+1 enforces a compatibility between Cn

and Cn\1 , in the sense that certain connections are required to occur
for Cn . These connections are depicted schematically in Fig. 2. We omit
any discussion of the easier special cases where it is the expectation at
level-0 or N that is differentiated.

We recall the definition of the backbone of a cluster Cn+1 connecting
vn to un+1 , namely the set of all sites x for which there are disjoint connec-
tions x W vn and x W un+1. We denote this backbone as B(Cn+1)#Bn+1.
We also recall the existence of an ordering of the pivotal bonds for the
connection from a site to a set of sites, as defined in Definition 2.1(d). The
cutting bond is defined to be the last pivotal bond (a$, a) for the connection
y � [vn&1 , un] _ Bn+1. It is possible that no such pivotal bond exists, and
in that case, no expansion is required.

In choosing the cutting bond, we require it to be pivotal for
[vn&1, un] to preserve (on the a side of the cluster Cn) the backbone struc-
ture of the cluster Cn which is required by F $1(vn&1, un ; Cn&1)n . Also, we
require the cutting bond to be pivotal for Bn+1 to ensure that we do not
cut off as a tail something which may be needed to ensure that, as required
by F $1(vn , un+1; Cn)n+1, the last sausage of Cn+1 is connected through Cn .

Fig. 2. Schematic diagram of the choice of cutting bond. Solid lines represent Cn , dashed
lines Cn&1 , and bold dashed lines represent Bn+1.
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Having chosen the cutting bond, we now begin to set the scene for the
expansion. This requires an examination of the overall conditions present
in the level-n expectation. In addition to F $1(vn&1 , un ; Cn&1)n itself, there
are conditions arising from F $1(vn , un+1 ; Cn)n+1 . The latter event can be
decomposed as

F $1(vn , un+1 ; Cn)n+1=F0(vn , un+1)n+1 & Hcut(Bn+1)n (5.25)

where

F0(vn , un+1)n+1=[vn W un+1 6 vn W% G] (5.26)

Hcut(Bn+1)n=[Cn intersects Bn+1 such that the level-(n+1)

connections satisfy (v$n+1 � un+1 through Cn) 6

(vn W u$n+1 in Zd"Cn)] (5.27)

with (u$n+1 , v$n+1) the last pivotal bond for the level-(n+1) connnection
from vn to un+1 required by (F1)n+1 . (If there is no such pivotal bond, the
requirements in (5.27) are replaced by vn � un+1 through Cn). Our task
now is to rewrite the overall level-n condition F $1(vn&1 , un ; Cn&1)n &
Hcut(Bn+1)n & [ y # Cn]n into a form suitable for generating the expansion.

Recall the definition of C� (a, a$)(A) given in Definition 2.1. We define
several events, as in Section 2.2. These events depend on y, vn&1 , un , Cn&1 ,
Bn+1 , but to simplify the notation we make only the y-dependence explicit
in the notation. Let

H1( y)n=[ y W vn&1] & F $1(vn&1 , un ; Cn&1)n & Hcut(Bn+1)n (5.28)

H $1( y)n=H1( y)n & [ y � [vn&1 , un] _ Bn+1] (5.29)

H"1(a, a$)n=[H $1(a)n occurs on C� [a, a$]
n ([vn&1 , un] _ Bn+1)] (5.30)

H1(a, a$, y)n=H1( y)n & [(a$, a) is the last occupied pivotal bond

for y � [vn&1 , un] _ Bn+1] (5.31)

Then the overall level-n event H1( y)n is the disjoint union

H1( y)n=H $1( y)n _* \ .4
(a, a$)

H1(a, a$, y)n+ (5.32)

In (5.32), configurations in H1( y)n have been classified according to the
last pivotal bond (a$, a). The appearance of H $1 corresponds to the
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possibility that there is no such pivotal bond, and in this case, no expan-
sion will be required.

For the configurations in which there is a pivotal bond, we will use the
following important lemma.

Lemma 5.3. The events H1(a, a$, y)n and H"1(a, a$)n obey

H1(a, a$, y)n=H"1(a, a$)n & [( y W a$ 6 y W% G) occurs in

Zd"C� [a, a$]
n ([vn&1 , un] _ Bn+1)]

& [[a, a$] is occupied] (5.33)

Before proving the lemma, we note that together with (5.32) and
Lemma 2.4 it implies the identity

(I[H1( y)n]) t

n =(I[H $1( y)n]) t

n + pc :
(a, a$)

(I[H"1(a, a$)n]

_{C� n
[a, a$]([vn&1, un] _ Bn+1)

h (a$, y)) t

n (5.34)

This will be the point of departure for the second expansion. Initially, the
restricted two-point function appearing in the above equation should be
with respect to the conditional, rather than the usual expectation. How-
ever, there is no difference between the two. To see this, note that the event
that a$ W y in Zd"C� [a, a$]

n ([vn&1 , un] _ Bn+1) is independent of the bond
[un , vn], since this bond touches the set C� [a, a$]

n ([vn&1 , un] _ Bn+1). There-
fore either expectation can be used for the restricted two-point function,
and for simplicity, we will use the ordinary unconditional expectation.

Proof of Lemma 5.3. To abbreviate the notation, we write A=
[vn&1 , un] _ Bn+1 , and define

Fpiv=[(a$, a) is pivotal for y � A] (5.35)

By definition of H1(a, a$, y)n ,

H1(a, a$, y)n=[[a, a$] is occupied] & H1( y)n & [a � A] & Fpiv (5.36)

We introduce the events

F1=[a W vn&1]n & [a � A]n & F $1(vn&1 , un ; Cn&1)n & Hcut(Bn+1)n (5.37)

F2=[ y W a$ 6 y W% G]n (5.38)
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and claim that

H1(a, a$, y)n=[F1 occurs on C� [a, a$](A)] & [F2 occurs in Zd"C� [a, a$]
n (A)]

& [[a, a$] is occupied] & Fpiv (5.39)

Assuming the claim, Lemma 2.5 can then be employed to rewrite the last
event in the above, to give

H1(a, a$, y)n=[(F1 6 a W A) occurs on C� [a, a$]
n (A)] & [[a, a$] is occupied]

& [(F2 6 y W a$) occurs in Zd"C� [a, a$]
n (A)] (5.40)

In view of the definitions of F1 and F2 , this implies the desired identity
(5.33).

It remains to prove (5.39). Combining (5.36) and (5.28), we have

H1(a, a$, y)n=[[a, a$] is occupied] & [ y W vn&1] & F $1(vn&1 , un ; Cn&1)n

& Hcut(Bn+1)n & [a � A] & Fpiv (5.41)

To see that this can be written in the form (5.39), we will analyze the
various events in the above expression.

We begin with [ y W vn&1], and note that

[ y W vn&1] & Fpiv=[ y W a$] & [[a, a$] is occupied]

& [a W vn&1 occurs on C� [a, a$]
n (A)] & Fpiv (5.42)

In fact, the right side is clearly contained in the left side. Conversely, for a
configuration on the left side, since vn&1 # A, the bond (a$, a) must also be
pivotal for y W vn&1 , and this implies that [ y W a$], that [a$, a] is
occupied, and that a W v occurs on C� [a, a$]

n (vn&1). Since C� [a, a$]
n (vn&1)/

C� [a, a$]
n (A), this implies [a W vn&1 occurs on C� [a, a$]

n (A)]. This proves
(5.42). Now, by Lemma 2.5, Fpiv is the intersection of the events [ y W a$
occurs in Zd"C� [a, a$]

n (A)] and [a W A occurs on C� [a, a$]
n (A)], and hence it

follows from (5.42) that

[ y W vn&1] & Fpiv

=[[a, a$] is occupied] & [a W vn&1 occurs on C� [a, a$]
n (A)]

& [ y W a$ in Zd"C� [a, a$]
n (A)] (5.43)
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Next we prove that

F $1(vn&1 , un ; Cn&1)n & Fpiv & [ y W vn&1] & [[a, a$] is occupied]

=[F $1(vn&1 , un ; Cn&1) occurs on C� [a, a$]
n (A)]

& [ y W% G in Zd "C� [a, a$]
n (A)]

& [ y W a$ in Zd"C� [a, a$]
n (A)] & [a W vn&1 occurs on C� [a, a$]

n (A)]

& [[a, a$] is occupied] (5.44)

As a first observation, we note that by (5.43), the second last line in the
above can be replaced by [ y W vn&1] & Fpiv , and we will interpret the right
side in this way. To prove (5.44), we begin by supposing we have a con-
figuration in the left side. To show that it is in the right side, it suffices to
show that the first two events on the right side must then occur. By the
G-free condition in F $1 , together with the fact that y # Cn(vn&1), it follows
that [vn&1 W% G occurs on C� [a, a$]

n (A)] and that [ y W% G in Zd "C� [a, a$]
n (A)].

As for the bond connections required by F $1 , these are conditions on the
backbone Bn , which are independent of bonds not touching C� [a, a$]

n (A)
since Fpiv occurs. Thus these connections must occur on C� [a, a$]

n (A), and
we have shown that the left side of (5.44) is contained in the right side.
Conversely, given a configuration on the right side, we need to show that
F $1 occurs. The necessary bond connections again occur since Fpiv occurs.
To see that, in addition, vn&1 W% G, we note that when [ y W vn&1] & Fpiv

occurs, Cn(vn&1)=C� [a, a$]
n (a) _* C� [a, a$]

n (a$), where the union is disjoint. But
for a configuration on the right side of (5.44), the two clusters forming this
disjoint union must be G-free. This completes the proof of (5.44).

Turning now to Hcut(Bn+1)n , we claim that

Hcut(Bn+1)n & Fpiv=[Hcut(Bn+1)n occurs on C� [a, a$]
n (A)] & Fpiv (5.45)

In fact, if the left side occurs, then the right side occurs because Fpiv

requires (a$, a) to be pivotal for y 's connection to Bn+1 and hence all Cn's
connections to Bn+1 are independent of bonds not touching C� [a, a$]

n (A).
Conversely, the right side is contained in the left side for the same reason.

Finally, we claim that

[a � A] & Fpiv=[a � A occurs on C� [a, a$]
n (A)] & Fpiv (5.46)

In fact, because [a � A] is increasing, the right side is contained in the left
side. Conversely, for a configuration on the left side, it must be the case
that [a � A occurs on C� [a, a$]

n (a)], and since C� [a, a$]
n (a)/C� [a, a$]

n (A), the
right side occurs.
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The event H1(a, a$, y)n is the intersection of the events occurring on
the left sides of (5.44), (5.45) and (5.46). Therefore it is the intersection of
the events occurring on the right sides of these equations. A rearrangement
of these right side events then gives (5.39) and completes the proof. K

We are now in a position to obtain the identity (5.24), starting from
(5.34) and using the one-M scheme. With N and n fixed, the first step is to
rewrite {C�

h in (5.34) using (2.19). The result is

(I[H1( y)n]) t

n =(I[H $1( y)n]) t

n + pc :
(a0 , b0)

(I[H"1(a0 , b0)n]) t

n {h(b0 , y)

& pc :
(a0 , b0)

(I[H"1(a0 , b0)n]

_(I[F1(b0 , y; C� [a0 , b0]
n ([vn&1 , un] _ Bn+1))) (n, 1)) t

n

+ pc :
(a0 , b0)

(I[H"1(a0 , b0)n]

_(I[F2(b0 , y; C� [a0 , b0]
n ([vn&1 , un] _ Bn+1))) (n, 1)) t

n

(5.47)

We further expand the term containing F1 using (2.31), leaving the term
containing F2 as it is. Let C� (n, 0)=C� [a0 , b0]

n ([vn&1 , un] _ Bn+1). For j�1,
let C� (n, j)=C� [aj , bj ]

(n, j) (b j&1), Z$(n, j)=I[F $1(bj&1 , y; C� (n, j&1)], and Z$(n, j)=
I[F"1(bj&1 , aj , b j ; C� (n, j&1)].

The first iteration can be written schematically as

( (H1)n) t

n =( (H $1)n) t

n +( (H"1)n) t

n {&( (H"1)n ( (F1) (n, 1)) (n, 1)) t

n

+( (H"1)n ( (F2) (n, 1)) (n, 1)) t

n

=( (H $1)n) t

n +( (H"1)n) t

n {&( (H"1)n (Z$(n, 1)) (n, 1)) t

n

&( (H"1)n (Z"(n, 1)) (n, 1)) t

n {

+( (H"1)n (Z"(n, 1)( (F1) (n, 2)) (n, 2)) (n, 1)) t

n

+( (H"1)n ( (F2) (n, 1)) (n, 1)) t

n

&( (H"1)n (Z"(n, 1)( (F2) (n, 2)) (n, 2)) (n, 1)) t

n (5.48)

and we continue expanding the term containing F1 , to infinite order. The
expansion to infinite order will be justified by the diagrammatic estimates
of the next section. This leads to an identity that can be abbreviated as

( (H1)n) t

n =û (n)
h (0)+v̂ (n)

h (0) /h+ê (n)
h (0) (5.49)
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where the first and second terms respectively comprise the terms with
innermost expectation involving Z$ and Z", and the last term comprises
those involving F2 . Explicitly,

v̂ (n)
h (0)= :

�

l=0

(&1)l v̂ (n, l)
h (0)

(5.50)
v̂ (n, l)

h (0)=E� n(H"1)n E (n, 1) Z"(n, 1) } } } E(n, l) Z"(n, l)

ê (n)
h (0)= :

�

l=1

(&1)l ê (n, l)
h (0)

(5.51)
ê (n, l)

h (0)=E� n(H"1)n E (n, 1) Z"(n, 1) } } } E(n, l&1)Z"(n, l&1) E(n, l)(F2) (n, l)

and û (n)
h (0) is defined as in (5.50) with Z$(n, l) replacing Z"(n, l) , and H $1

replacing H"1 for l=0. In the l=0 term, only the leftmost expectation
occurs.

Defining

V� (N, n, l)
h (0)=E0I[E"0] E1Y"1 } } } En&1 Y"n&1E� n+1I[(F0)n+1]

_E� n v̂ (n, l)
h (0) En+2 Y"n+2 } } } ENY"N (5.52)

this gives (5.24) with

V� (N )
h (0)= :

N

n=0

:
�

l=0

(&1)N V� (N, n, l)
h (0) (5.53)

and analogous expressions for U� (N )
h (0) and E� (N )

h (0). The right side of (5.52)
requires special interpretation for the terms n=0, N.

5.4. Proof of Proposition 5.1

Proposition 5.1 follows from (5.24) and the following lemma. Section 5.4 is
devoted to proving the lemma. The constant K1 of Proposition 5.1 is given
by K1=V� 0(0), where V� 0(0) appears in the lemma.

Lemma 5.4. The series U� h(0)=��
N=0 U� (N )

h (0) and V� h(0)=
��

N=0 V� (N )
h (0) for h�0, and E� h(0)=��

N=0 E� (N )
h (0) for h>0, converge

absolutely. Moreover, U� h(0)=O(1), E� h(0)=oh(1) /h , and

V� h(0)=V� 0(0)+oh(1), V� 0(0)=1+O(*) (5.54)
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Proof. The analysis of U� h(0) is almost identical to that of V� h(0), so
we discuss only V� h(0) and E� h(0). The proof consists of obtaining suitable
diagrammatic estimates on V� (N, n, l)

h (0) and E� (N, n, l)
h (0) (see (5.52)).

Roughly speaking, the bounds will involve horizontal ``ladder'' diagrams
like those encountered in the bounds on 8� h(k), with an additional vertical
ladder resulting from the nested expectation of v̂ (n, l)

h (0) or ê (n, l)
h (0). We will

estimate these diagrams with the help of the power counting methodology
of Appendix A.

We first consider the case l=0, and then move on to l�1. Finally,
we will prove (5.54).

The Case l=0. There is no contribution to E� (N )
h (0) arising from

l=0, so we are concerned here with V� (N )
h (0). Our goal is a diagrammatic

estimate for

V� (N, n, 0)
h (0)=E0I[E"0] E1Y"1 } } } E� n&1 Y $n&1E� n+1I[(F0)n+1]

_E� n(H"1)n En+2Y"n+2 } } } ENY"N (5.55)

(We omit any discussion of the special cases n=0, N, which can be handled
similarly.) This estimate will involve a modification of the diagrams used to
estimate 8� h(0), obtained by ``growing'' a vertical diagram from the
horizontal diagrams encountered in bounding 8� h(0).

We first note that, by (5.25) and (5.28)�(5.30), the intersection
(F0)n+1 & (H"1)n is a subset of

[a0 W vn&1] & [a0 � [vn&1 , un] _ Bn+1]

& F $1(vn&1 , un ; Cn&1)n, b & F $1(vn , un+1 ; Cn)n+1, b (5.56)

where the subscripts b denote bond events with site conditions relaxed.
Thus the bond connections that gave rise to the diagrammatic estimates on
8� h(k) in Section 3.2, due to (F $1)n, b and (F $1)n+1, b , remain present after
differentiation. The event

[a0 W vn&1] & [a0 � [vn&1 , un] _ Bn+1] (5.57)

provides additional connections that can be bounded using the BK
inequality. In fact, (5.57) implies the existence of either (i) two disjoint
level-n paths a0 W [vn&1 , un], or (ii) disjoint level-n paths a0 W [vn&1 , un]
and a0 W Bn+1 . We now consider the diagrammatic implications of these
two cases.

In case (i), the two connections implied by a0 � [vn&1 , un] are added
to the connections due to (F $1)n, b that arise in the diagrams bounding this
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Fig. 3. (a, b) Examples of diagrams arising from case (i). (c, d) An example of the diagram-
matic bound of case (ii). Thick lines represent level-n connections and thin lines represent
levels-(n\1).

part of 8� h(k). This can be bounded, using the BK inequality, by adding
two lines to the lines appearing already in the diagrammatic estimate for
this part of 8� h(k) (the ``old'' lines), with the lines going from a to two new
vertices, say c and d. Thus the resulting new diagrams are obtained by per-
forming construction 1 followed by construction 2 of Section A.2 to the old
diagrams. Examples of this construction are given in Fig. 3(a�b).

In case (ii), we add disjoint connections a0 W [vn&1 , un] and
a0 W Bn+1. We need only consider the case where the second of these
paths is disjoint from the paths extracted from the event (F $1)n , because
otherwise the situation reduces to case (i). For the path resulting from
a0 W [vn&1 , un], we add a new vertex c on an existing level-n line of the
8 diagram, and then connect this vertex c and a0 with a new line. This
takes care of the level-n connection, and the situation is depicted in
Fig. 3(c). For the second path, we must have a path from a0 to some point
d in Bn+1. We now have to ask how this d is connected, via level-(n+1)
connections, to the rest of a level-(n+1) diagram of 8h(k). For this pur-
pose, we recall that Bn+1 is the set of all points which are on a path from
vn to un+1 . As an upper bound, we just require d � [vn , un+1], which
brings us back to the situation of case (i). Thus there are sites e, f on the
level-(n+1) lines, with lines from d to each of these sites. This is depicted
in Fig. 3(d). The net result is an application of construction 1 (at e)
followed by application of construction 3.

In summary, the resulting diagrams can be obtained by applying con-
struction 1, followed by application of construction 2 or 3, to the diagrams
used previously to bound 8� h(k), with the construction applied either at
level-n or on levels-n and n+1. Now we bound these diagrams, in several
steps.

We begin by decomposing the diagrams as in Section 3.2, both from
the side of level-0 and level-N. These estimates produce triangles, with
corresponding factors of *. The decomposition from level-0 stops at level-
(n&2), and that from level-N stops at level-(n+2), with levels n&1, n and
n+1 remaining to be handled. A diagram corresponding to these levels
will be open at its two ends, with a supremum over the displacement
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Fig. 4. (a) The combinations producing the central diagram remaining after decomposition.
(b) An example of a combination in (a). (c) Construction of the diagram in (b) via applica-
tion of construction 2 to the bubble.

corresponding to the opening. This can be bounded above by the diagram
obtained by closing the two ends and by closing the small openings corre-
sponding to pivotal bonds. The possible results, before application of
constructions 1, 2, 3, are depicted in Fig. 4(a), with the dashed lines
representing the lines which are ``moved'' to close the diagram as an upper
bound. There are eight possible combinations in all, with an example
depicted in Fig. 4(b).

For the nearest-neighbour model in sufficiently high dimensions, we
may employ squares, pentagons, etc. in our estimates, and it is not difficult
to see that the diagrams obtained after applying constructions 1, 2, 3 are
all O(1). We therefore restrict attention now to the spread-out model. It
can be checked that each of the eight diagrams can be obtained by apply-
ing construction 2 to the bubble, as depicted in Fig. 4(c). By Lemma A.3,
for d>6, each of these diagrams therefore has infrared degree at least that
of the bubble diagram, which has deg0=d&4. Thus, by (A.14), the
diagrams obtained by a subsequent application of constructions 1 and 2
will have deg0�d&6>0. By Theorem A.1, these diagrams are therefore
convergent and O(1).

In conclusion, we obtain the bound

|V� (N, n, 0)
h (0)|�min[O(1), O(*N&3)] (5.58)

The Case l�1. We now consider the case l�1, and obtain the
bounds

|V� (N, n, l)
h (0)|�min[O(1), O(*N+l&4)]

(5.59)
|E� (N, n, l)

h (0)|�min[O(1), O(*N+l&4)] oh(1) /h

This is sufficient to prove Lemma 5.4, apart from (5.54) which we will
prove later. The quantities on the left side of (5.59) will be bounded in
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terms of diagrams like those encountered above for l=0, but with further
growth in the ``vertical'' direction. For V, this vertical growth arises from
additional expectations of F"1 , whereas for E, the expectation at level-(n, l)
is F"2 . These modifications to the l=0 diagrams do not depend on levels
0 to n&2 or on levels n+2 to N, and the expectations corresponding to
these levels can be bounded by triangles as before to give rise to a factor
*N&3 multiplied by a diagram with two ends closed as in the example
shown in Fig. 4(b). Our task now is to understand the structure of this
remaining diagram, with its vertical growth, and to bound it appropriately.
We begin by considering the case l=1 of (5.59).

First, we consider V� (N, n, 1)
h (0). In view of (5.47), this requires estima-

tion of

(I[H"1(a0 , b0)n](I[F"1(b0 , y; C� [a0 , b0]
n ([vn&1 , un] _ Bn+1))) (n, 1)) t

n

(5.60)

In a similar fashion to the case l=0 already treated, the H"1 leads to
application of constructions 1, 2, 3 applied to the 8� h(k)-diagram reduced
as in Fig. 4(b). This construction gives an infrared degree deg0�d&6>0,
as before. However, there are now additional new connections arising from
F $1 in the level-(n, 1) expectation. These connections are as depicted in
Fig. 5(a). They correspond to two applications of construction 2, which
does not lower the infrared degree. It is not difficult to see that (5.60) is
O(1) for the nearest-neighbour model in sufficiently high dimensions. For
the spread-out model, it is also O(1), by power counting. This gives rise to
an overall bound of order min[1, *N&3] for V� (N, n, 1)

h (0).
Consider now E� (N, n, 1)

h (0), for which F2 occurs on level-(n, 1). We first
remove triangles as above, obtaining a factor of order min[1, *N&3].
We then apply the cut-the-tail Lemma 3.5 in the usual way, extracting a
factor /h . The tail and remaining connections due to F2 are depicted in
Fig. 5(b). A factor Mh arises from the connection to G, and the three
remaining lines due to F2 can be estimated by a factor of the triangle
diagram. The remaining diagram is obtained from a diagram from the l=0
case by addition of a vertex on one of the lines corresponding to level-n or

Fig. 5. (a) The connections arising from level-(n, 1) in V� (N, n, 1)
h (0). (b) The connections

arising from level-(n, 1) in E� (N, n, 1)
h (0).
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level-(n+1). For the nearest-neighbour model in sufficiently high dimen-
sions, we may employ the square and larger diagrams and conclude an
overall bound here of O(1) Mh/h=O(1). However, as we now explain, the
spread-out model in dimensions d>6 requires more care.

Arguing as in Example 4.5, using Lemma 4.3 we may choose any one
of the diagrammatic lines arising in any expectation other than level-(n, 1)
to be G-free. We may therefore regard the additional vertex mentioned in
the previous paragraph as residing on a massive line, with +2=/&1

h . Thus
this extra vertex at worst reduces deg0 by 2 to d&8 (according to Lemma A.3),
but does not change deg + . Hence the diagram is convergent for h>0, and
by Theorem A.2, its rate of divergence as h � 0 is bounded above by
O(+d&8 |log +|L)=O(/ (6&d )�2

h |log /h |L) /h=oh(1) /h , consistent with (5.59).
Now we turn to the case l�2, beginning with V� (N, n, l)

h (0). Again we
bound the expectations corresponding to levels-0 to n&2 and n+2 to N
by triangles, and close up the ends of the resulting diagram. Each expecta-
tion from levels-(n, 1) to (n, l) corresponds diagrammatically to construc-
tion 2 applied to the diagrams encountered for the case l=0, and does not
decrease the infrared degree. We may estimate each of these expectations
with a triangle (each providing a factor *), leaving a bounded diagram.
This gives the desired bound for V� (N, n, l)

h (0). For E� (N, n, l)
h (0), we combine

the method used for V� (N, n, l)
h (0) with that employed for E� (N, n, 1)

h (0).

Proof of (5.54). First we consider V� h&V� 0 . As we have seen,
diagrams contributing to V� h(0) are finite. As in (3.59), the difference gives
rise to a connection to G. This is bounded pointwise by Mh , and hence the
dominated convergence theorem can be applied to conclude that
V� h(0)&V� 0(0)=oh(1).

Finally, we argue that V� 0(0)=1+O(*). Consider first the nearest-
neighbour model. Using the square and higher diagrams if necessary, we
can bound �N, n, l V� (N, n, l)

h (0) by O(*) for all terms except N=n=l=0.
This can be seen from the fact that these terms all include at least one
expectation having a pivotal bond, and the occurrence of a pivotal bond
implies a bound O(*). The remaining term is the first term of (5.18). In that
term, the contribution due to u0=0 is readily seen to be 1+O(*), while
the contribution due to u0{0 is O(*). This gives the desired result for the
nearest-neighbour model.

For the spread-out model, we argue similarly. However, in this case
there are contributions from diagrams that we are unable to bound using
a factor of the triangle that is clearly O(*). We have used power counting,
previously, to bound these contributions by O(1). To improve these
bounds to O(*), we appeal to dominated convergence via the following
argument (similar to [5, Lemma 5.9]). First we observe that by [5,
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(5.36)], if k{0 then limL � � 1&D� (k)=1. It follows that the limit of any
convergent diagram containing summation over a pivotal bond [u, v] is
the corresponding integral of eik } (v&u), integrated over [&?, ?]d. This
integral is zero. Since all the diagrams that were bounded using power
counting do contain such a pivotal bond, we obtain the desired bound
O(*). K

5.5. Differentiation of 5� h(0)

In this section, we discuss the second expansion used in the proof of
Proposition 5.2. Our analysis of 5� h(0) has much in common with the above
analysis of 8� h(0), but there are also important differences. For 8� h(0), we
used the fact that all connections involved in the definition of 8� h(0) were
G-free to show that its derivative gave rise to a ``tail'' corresponding, after
a second expansion to cut off the tail, to a factor of /h . Integration of this
factor of /h then gave rise to the Mh appearing in (5.6). For 5� h(0), on the
other hand, there is a connection to G explicitly demanded in the expectation
containing W$. Although this easily gives rise to a bound involving Mh , we
need to extract a factor of the magnetization in an asymptotic relation. We
do not have an expansion that can be used to ``cut off '' a factor of Mh , so
we will differentiate in this expectation to convert this connection to G to
a G-free tail. This tail can then be cut off, as a factor of the susceptibility,
by means of a second expansion.

By the fundamental theorem of calculus, 5� (n, m)
h (0) can be written as

5� (n, m)
h (0)=(&1)m+n&1 |

h

0
du E0, h I[E"0] E1, hY"1 } } } E� n&1, hY $n&1

_
d

du
E� n, uW $nE� n+1, hY $n+1En+2, hY"n+2 } } } En+m, hY"n+m (5.61)

where subscripts indicate the value of the magnetic field for each expectation.
The factor W $n involves the events F $3 and F $5, which require a connection
to G, while the factors Yj involve only G-free connections.

To understand the derivative here, we introduce the clusters Q j
1 , Q j

2

( j=3, 5) depicted in Fig. 6. Explicitly, these are defined in conjunction
with the occurrence of the event F $j (vn&1 , un ; C� n&1), as follows:

Q3
2=[ y # last sausage of C(vn&1) : un �ww�

Cn&1 y]

Q3
1=C(vn&1)"Q3

2

Q5
2=[ y # C(vn&1)"[last sausage of C(vn&1)] : vn&1 �ww�

Cn&1 y]

Q5
1=C(vn&1)"Q5

2
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Fig. 6. Schematic depiction of Q3
1 , Q3

2 , Q5
1 , Q5

2 . Crosshatched regions represent Cn&1 and
dotted lines represent possible but not mandatory connections in C(vn&1).

The u-dependence of F $3 and F $5 is then given by

e&u |Q1
j | (1&e&u |Q2

j | ) ( j=3, 5) (5.62)

Its derivative is

&|Q j
1 | e&u |Q1

j | (1&e&u |Q2
j | )+|Q j

2 | e&u( |Q1
j |+|Q2

j | ) (5.63)

The second term will turn out to be the main term, for both j=3, 5. The
first term will give rise to error terms that can be handled more easily,
using bounds which we defer to Section 5.6. We divide these contributions
as

5� (n, m)
h (0)=|

h

0
du(M� (n, m)

h, u (0)+N� (n, m)
h, u (0)) (5.64)

where M� (n, m)
h, u (0) comprises the main terms due to the second term of

(5.63), and N� (n, m)
h, u (0) contains the terms corresponding to the first term

of (5.63). In the remainder of this section, we consider only M� (n, m)
h, u (0),

because this is the term for which we apply a second expansion.
We first discuss the contribution to M� (n, m)

h, u (0) arising from the j=3
case of (5.63). The result of the differentiation is u-dependence of the form
which corresponds to the cluster Cn being entirely G-free. We write the
prefactor |Q3

2 | as �y I[ y # Q3
2]. Our goal is to use a second expansion to

cut off the connection to y, as in Section 5.3.
As in Section 5.3, the first step is the identification of a suitable pivotal

bond at which to sever the connection to y. Again we apply Fubini's
theorem to interchange the nth and (n+1)st (bond�site) expectations, and
regard the clusters Cn\1 as being fixed. The occurrence of the events (F $1) l ,
l=n\1 and the event (F $3)n enforces a compatibility between Cn and
Cn\1 , in the sense that certain connections are required to occur for Cn .
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Fig. 7. Schematic depiction of the choice of cutting bond for F3 . Solid lines represent Cn ,
dashed lines Cn&1 , and bold dashed lines represent Bn+1. Pivotal bonds in the last sausage
are numbered 1 to 8. In this example, the cutting bond is bond 4.

These connections are depicted schematically in Fig. 7. In particular, the
site y is in the last sausage for vn&1 � un , and is connected to vn&1 and un

through C� n&1 , since y # Q3
2 .

To define the cutting bond, we let P( y) be the set of occupied pivotal
bonds for y � un , and given b # P( y), we let b+ be the endpoint of b such
that un # C� b

n(b+). We define the following two subsets of P( y):

Pn+1( y)=[b # P( y) : b is an occupied pivotal bond for y � Bn+1]

Pn&1( y)=[b # P( y) : b+ �ww�
Cn&1 un]

In Fig. 7, Pn+1( y)=[1, 2, 3, 4], while Pn&1( y)=[1, 2, 3, 4, 5, 6, 7]. The
cutting bond is then defined to be the last element of Pn&1( y) & Pn+1( y),
in the direction y � un . In the example of Fig. 7, the cutting bond is
bond 4. It is possible that no such pivotal bond exists, and in that case, no
expansion will be required.

The reason for the above choice for the cutting bond is as in Section 5.3.
We require the cutting bond to be pivotal for Bn+1 to ensure that we do
not cut off as a tail something which may be needed to insure the intersec-
tion�avoidance properties between Cn and Bn+1 imposed by (F $3)n and
(F $1)n+1 . We also want to maintain the connections through Cn&1 on the
last sausage of Cn , and our choice does preserve these connections. This is
analogous to the first expansion, where we cut at the first pivotal bond
after the condition v �w�A x has been satisfied.
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Having chosen the cutting bond, we next examine the overall condi-
tions present in the level-n expectation. In addition to F $3(vn&1 , un ; Cn&1)n

itself, there are conditions arising from the event F $1(vn , un+1 ; Cn)n+1 .
Recalling the definitions in Section 5.3, the latter event can be decomposed
as

F $1(vn , un+1 ; Cn)n+1=F0(vn , un+1)n+1 & Hcut(Bn+1)n (5.65)

Our task now is to rewrite the overall level-n condition F $3, b(vn&1 , un ; Cn&1)n

& [vn&1 W% G]n & Hcut(Bn+1)n & [ y # Q3
2]n into a form suitable for

generating the expansion. Here, F $3, b(vn&1 , un ; Cn&1)n denotes the intersec-
tion of [vn&1 W un] with the event that the last sausage of vn&1 � un is
connected to Cn&1 .

As in Section 5.3, we define the events:

H3( y)n=[ y # Q3
2] & F $3, b(vn&1 , un ; Cn&1)n & [vn&1 W% G]n

& Hcut(Bn+1)n (5.66)

H $3( y)n=H3( y)n & [Pn&1( y) & Pn+1( y)=<] (5.67)

H"3(a, a$)n=[H $3(a)n occurs on C� [a, a$]
n ([vn&1 , un] _ Bn+1)] (5.68)

H3(a, a$, y)n=H3( y)n & [(a$, a) is the last occupied pivotal bond in

Pn&1( y) & Pn+1( y)] (5.69)

Classifying configurations in H3( y)n according to the last pivotal bond
(a, a$) (if there is one) yields the disjoint union

H3( y)n=H $3( y)n _* \ .4
(a, a$)

H3(a, a$, y)n+ (5.70)

For H $3( y)n , no second expansion is required. For the configurations in
which there is a pivotal bond, we will use the following lemma.

Lemma 5.5. The events H3(a, a$, y)n and H"3(a, a$)n obey

H3(a, a$, y)n=H"3(a, a$)n & [( y W a$ 6 y W% G) occurs in

Zd"C� [a, a$]
n ([vn&1 , un] _ Bn+1)]

& [[a, a$] is occupied] (5.71)

We omit the proof of Lemma 5.5, since it proceeds in the same way
as the proof of Lemma 5.3. However, there is one respect which is some-
what different. Unlike the analysis for H1( y), for H $3 it is not possible to
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write the ``no pivotal'' condition as [ y � Cn&1 _ Bn+1]. It is true that
every configuration in H $3( y) obeys [ y � Cn&1 _ Bn+1], but the converse
is not true. For example, in the configuration of Fig. 7, the true cutting
bond is bond 4, even though a double connection to Cn&1 _ Bn+1 occurs
already after bond 2. But this difference from the situation in Lemma 5.3
is a minor one, and because our choice of the cutting bond imposes no
Cn&1 -related conditions on the a$-side of the connection y W a$, the
analysis can proceed as before.

Now we note that together with (5.70) and Lemma 2.4, Lemma 5.5
implies the identity

(I[H3( y)n]) t

n =(I[H $3( y)n]) t

n + pc :
(a, a$)

(I[H"3(a, a$)n]

_{C� n
[a, a$]([vn&1, un] _ Bn+1)

u (a$, y)) t

n (5.72)

As in (5.34), the restricted two-point function in (5.72) is with respect to
the ordinary unconditional expectation. The identity (5.72) is exactly
analogous to (5.34), and the second expansion can be derived for (5.61)
using the one-M scheme, exactly as was done in Section 5.3. A minor dif-
ference here is that the level-n expectation has magnetic field u. As a result,
the expansion for the level-n expectation is (5.48) with all the H1 replaced
by H3 , and with all the expectations of levels-(n, m) having magnetic field u.
Then we substitute this result back into (5.61). The result of the expansion
will be given below, after we consider the case of F5 .

We now consider the main contribution to the F5 case, which arises
from the j=5 case of the seond term of (5.63). The choice of cutting bond
is defined in exactly the same way as it was for the case of F3 , and the
second expansion proceeds in the same way. We define H5 events as in
(5.66)�(5.68), with F $3 and [ y # Q3

2] in (5.66) respectively replaced by F $5
and [ y # Q5

2]. This leads, as above, to the identity

(I[H5( y)n]) t

n =(I[H $5( y)n]) t

n + pc :
(a, a$)

(I[H"5(a, a$)n]

_{C� n
[a, a$]([vn&1, un] _ Bn+1)

u (a$, y)) t

n (5.73)

The second expansion then proceeds as usual, via the one-M scheme. We
perform the second expansion to infinite order, as will be justified by the
bounds of the next section.

To summarize, the second expansion yields a result of the form

M� (n, m)
h, u (0)=G� (n, m)

h, u (0)+H� (n, m)
h, u (0)/u+R� (n, m)

h, u (0) (5.74)
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The terms on the right side are sums of doubly nested expectations, with
the second nesting occurring at level n of the original nested expectation
defining 5� (n, m)

h (0). The term G� (n, m)
h, u (0) contains the terms in which the

innermost expectation in the second nesting carries a single prime, and is
analogous to U of (5.24). The term H� (n, m)

h, u (0) contains the terms in which
the innermost expectation in the second nesting carries a double prime, and
is analogous to V of (5.24). The term R� (n, m)

h, u (0) contains the terms in
which the innermost expectation in the second nesting involves F2 , and is
analogous to E of (5.24). Each of these three quantities can be written as
a sum over l, where l is the number of expectations nested within the n th
expectation.

5.6. Proof of Proposition 5.2

Lemma 5.6. Let u # [0, h]. The series G� h, u(0)=��
n, m=0 G� (n, m)

h, u (0)
and H� h, u(0)=��

n, m=0 H� (n, m)
h, u (0) for h�0, and R� h, u(0)=��

n, m=0 R� (n, m)
h, u (0)

and N�h, u(0)=��
n, m=0 N� (n, m)

h, u (0) for u>0, converge absolutely. Moreover,
G� h, u(0)=O(1), R� h, u(0)=oh(1) /u , N�h, u(0)=oh(1) /u , and

H� h, u(0)=H� 0, 0(0)+oh(1), H� 0, 0(0)=O(*) (5.75)

Combining (5.64), (5.74), and Lemma 5.6, we have

5� h(0)=|
h

0
du(H� 0, 0(0) /u+oh(1) /u)=(H� 0, 0(0)+oh(1)) Mh (5.76)

This gives Proposition 5.2 with K2=&H� 0, 0(0).

Proof of Lemma 5.6. The bounds on G� (n, m)
h, u (0) are similar to those

on H� (n, m)
h, u (0), and will not be discussed further. Also, the arguments

required for the nearest-neighbour and spread-out models are slightly dif-
ferent, as in the proof of Lemma 5.4, and for simplicity we restrict attention
in what follows to the spread-out model.

Before beginning the proof in earnest, we examine the diagrams used
to bound 5� (n, m)

h (0) in more detail. These differ from the diagrams of
8� (n+m)

h (0) only at levels n&1, n, n+1. When performing diagrammatic
estimates, the other expectations can be bounded using triangles. These
triangles give rise to a factor min[1, *n+m&3]. Recalling (4.33)�(4.34) and
Fig. 4(a), we are left with the truncated diagrams depicted schematically in
Fig. 8. The factor *n+m&3 controls the sums over n, m, and it suffices to
obtain an appropriate bound on the truncated diagram, modified to take
into account the diagrammatic changes arising in N, H, R.
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Fig. 8. The truncated diagrams contributing to 5 due to (a) F3 and (b) F5 .

It is helpful to examine the infrared degree of divergence of the
diagrams of Fig. 8. Consider first the assembled diagrams of Fig. 8(a) with
the line terminating at G and the vertex at b (for the first diagram) or wn&1

(for the second and third diagrams) omitted, and those of Fig. 8(b) with
the line terminating at G and the vertex at b omitted. We call these the
amputated truncated diagrams. As in Fig. 4(c), it can be seen that the
infrared degree of divergence of the amputated truncated diagrams is at
least d&4. If we then restore the vertex at wn&1 or b to an amputated trun-
cated diagram, this is construction 1 and hence the resulting diagram has
infrared degree at least d&6, by Lemma A.3.

We divide the proof of Lemma 5.6 into several parts. First, we con-
sider the error term N. We then consider the l=0 contribution to H.
Then we move on to the contributions of l�1 to H and R. Finally, we
prove (5.75). Our discussion will be brief at points where it does not differ
substantially from the proof of Lemma 5.4.

Bounds on N. The error term N is generated by the first term of
(5.63), which involves adding a connection to y # Q3

1 or y # Q5
1 , and then

summing over y.
Consider first the case of an added connection to y # Q5

1 . If we ignore
the connection to G in an upper bound, this corresponds to adding a vertex
at level-n to a truncated amputated diagram, with a line emanating to y.
We can use the cut-the-tail Lemma 3.5 to extract a factor of /u , multiplied
by a diagram with infrared degree d&6. (This also involves an application
of construction 2, which does not decrease the infrared degree.) However,
if we recall that this diagram actually has a connection to G, we can use
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the dominated convergence theorem to obtain an overall bound oh(1) /u .
The sum over m, n can then be performed, thanks to the factor *n+m&3

mentioned previously.
Now consider the case of an added connection to y # Q3

1 . In this case,
the connection to G plays an essential role in maintaining diagram connec-
tivity, and it cannot be ignored. However, we can use Lemma 3.5 to
produce a factor /u , we can extract a factor Mu from the connection to G,
and by employing a G-free line from the expectation at level-(n&1) or
level-(n+1) we can bound the remaining diagram by an analysis similar to
that used to bound E� (N, n, 1)

h (0) in Section 5.4. The overall result is a bound
/u Mu h(d&8)�4�oh(1) /u .

The Case l=0. We now bound the diagrams contributing to the
lowest order (l=0) contributions to H, i.e.,

E0I[E"0] E1Y"1 } } } E� n&1Y $n&1 E� n+1 I[(F0)n+1]

_E� n(H j")n En+2Y"n+2 } } } En+mY"n+m (5.77)

where j=3 or j=5. The discussion parallels the corresponding part of the
proof of Lemma 5.4. The diagram is truncated as described above, and we
bound the modification of the amputated truncated diagram which takes
into account the additional connections implied by Hj" . We will argue that
these connections arise from application of construction 1 followed by con-
structions 2 or 3. Thus the infrared degree of divergence is reduced from at
least d&4 to at worst d&6, by (A.13)�(A.14), and hence the diagrams are
O(1).

Consider first the case j=3. In addition to the bond connections
required by F $3(vn&1 , un ; Cn&1), we add connections due to a0 # Q3

2 and
Pn&1(a0) & Pn+1(a0)=<. The site a0 is located in the place of G of
Fig. 8(a). By definition, it is either the case that Pn&1(a0)/Pn+1(a0) or
Pn+1(a0)/Pn&1(a0). Thus we need only consider the two cases (i)
Pn&1(a0)=< and (ii) Pn+1(a0)=<.

We first consider case (i). This is depicted in Fig. 9(a). The extra
required (disjoint) connections are a0 W wn&1 and a0 W b. Here b is a new
vertex, while wn&1 was existing. Thus this is an application of construction 2,
which does not reduce the infrared degree. (A similar construction can be
applied in the case where the connection to wn emerges from the sausage
containing wn&1 .)

We next consider case (ii). There are several geometries to consider,
three of which are depicted in Fig. 9(b�d). In (b) and (c), there are addi-
tional disjoint paths from an existing vertex b in the 5-diagram to a0 (in
(b), we take b=wn&1) and from a0 to a new vertex c # Bn+1 . We may then
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Fig. 9. Original configurations for 5 (F3 case), and new connections required for a0 . Thick
lines on the last sausage represent connections which are already present before differentiation
(i.e., in the diagram of 5).

argue as we did in the proof of Lemma 5.4 that c is then connected to exist-
ing diagram lines from level-(n+1) in such a way that the overall addi-
tional lines are of the form of construction 3 (see Fig. 3(d)). The geometry
of Fig. 9(d), in which the connection to wn emerges from the sausage of a0 ,
deserves special comment. In this case, we may neglect any additional con-
nection to Bn+1 beyond that already present due to the connection from
b to wn . The new lines to be added are those from b (existing) to a0 and
from a0 to d (new), which is an application of construction 2.

Next, we move on to the case j=5 in (5.77), which involves Q5
2 shown

schematically in Fig. 6. Four of the relevant geometries are depicted in
Fig. 10. In (a), the new connections link a0 to wn&1 (existing) and a0 to c
(new), which is construction 2. In (b), the new connections link a0 to wn&1

and a0 to d (new), which is construction 3. In (c), the new connections link
a0 to c (existing) and a0 to d (new), which is construction 3. Finally, in (d),
the new connections link a0 to c (existing) and a0 to d (new), which is con-
struction 2. None of these constructions decrease the infrared degree from
its original value of d&6, so the diagrams are O(1).

The Case l�1. This case is bounded exactly as was done in the
proof of Lemma 5.4. Note that we require massive lines to estimate R, but
after differentiation the level-n expectation becomes G-free and the massive
lines can be obtained as before. One new ingredient here is that we have

Fig. 10. Original configurations for 5 (F5 case), and new connections required for a0 .
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two magnetic fields h and u, but the simple inequalities u�h, Mu�Mh ,
and /u�/h can be applied.

Proof of (5.75). The proof that H� h, u(0)=H� 0, 0(0)+oh(1) proceeds
as in the portion of the proof of Lemma 5.4 showing that V� h(0)&V� 0(0)=
oh(1), apart from the fact that now we have two magnetic fields h and u.
We again write the difference as a telescopic sum of differences at each
level, and each difference implies a connection to G. We further decompose
this sum of nested expectations as plus or minus sums of positive expecta-
tions. The difference can then be bounded above by setting u=h, since
increasing the magnetic field increases the difference. Then our previous
discussion applies.

To prove H� 0, 0(0)=O(*), we use the dominated convergence theorem as
in the proof that V� 0(0)=1+O(*). However, each term in H� 0, 0(0) contains
at least one loop with a pivotal bond, and the O(1) contribution does not
occur. K

APPENDIX A. POWER COUNTING FOR FEYNMAN
DIAGRAMS

In Section A.1, we summarize results of [29, 30] concerning the
estimation of Feynman diagrams using the quantum field theoretic techni-
que of power counting. Then in Section A.2, we provide a lemma which
allows for an efficient application of these results for the Feynman
diagrams arising in this paper.

A.1. Power Counting

Consider a Feynman diagram G consisting of N internal lines, no
external lines, and V vertices. Each (internal) line carries a d-dimensional
momentum pi (i=1, 2,..., N ), and represents a propagator

1
p2

i ++2
i

(A.1)

where the mass +i of the i th line can be either 0 or +>0, with + not
depending on i. The massless (+i=0) and massive (+i=+) lines are fixed
in G.

The Feynman diagrams encountered in this paper have propagator
{̂h, pc

(k). By Proposition 3.1, this propagator is bounded above by a con-
stant multiple of ([1&D� (k)]+h1�2)&1, with the constant independent
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of 0. For both the nearest-neighbour and spread-out models, 1&D� (k) is
bounded below by a universal constant multiple of k2�d (see [31, Appendix A]).
Therefore {̂h, pc

(k) is bounded above by a propagator of the form (A.1)
times a factor d which should be taken into account in bounding diagrams
for the nearest-neighbour model, but which is unimportant for the spread-
out model. Diagram lines with h>0 have mass +=h1�4.

Each of the V vertices of G imposes a momentum conservation condi-
tion, according to Kirchoff 's law. Of these, V&1 are independent, with the
momentum conservation at the other vertex then guaranteed by overall
momentum conservation. As a result, we have V&1 independent momen-
tum constraints. This leaves L=N&V+1 independent momenta kj

( j=1, 2,..., L), called loop momenta, which can be chosen from [ pi ]N
i=1 .

The choice of loop momenta is not uniquely determined by G. Given a
choice of loop momenta [kj ]L

j=1 , each pi can be written as a linear combina-
tion of the kj . The Feynman integral IG giving the value of the Feynman
diagram G is then

IG=|
[&?, ?]d

d dk1

(2?)d } } } |
[&?, ?]d

d dkL

(2?)d `
N

i=1

1
p2

i ++2
i

(A.2)

The value of IG is independent of the choice of loop momenta.
Our goals are (i) to provide a sufficient condition for convergence of

IG when +�0, and (ii) to determine the rate of divergence of IG , as + � 0,
in the case where IG is convergent for +>0 but not for +=0. For this, we
will use the infrared degree of divergence deg +(G), which is defined as
follows. First, given a set G of L loop momenta, and a subset H/G of
cardinality l, we define the infrared degree of divergence of H by

deg +(H)=dl&2*[massless line momenta determined by H] (A.3)

Note that (A.3) makes sense for d # R. For deg0 , all lines are regarded as
massless, whereas for deg + , only the lines for which +i=0 are massless. In
(A.3), a line momentum pi is said to be determined by H if pi is in the
linear span of H. Then we define the infrared degree of divergence of the
full graph G by

deg +(G)=min
G

min
H : H/G, H{<

deg +(H) (A.4)

where the minimum is taken over all choices G of loop momenta for G and
over all nonempty subsets H/G. The following theorem, which is [29,
Theorem 1], asserts that a Feynman integral is finite if its infrared degree
of divergence is positive.
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Theorem A.1. The Feynman integral IG converges if deg +(G)>0.

Theorem A.1 implies that a diagram is more likely to be convergent in
high dimensions. We define dc(G), the critical dimension of a diagram G, by

dc(G)=inf[d # R : deg0(G)>0] (A.5)

By definition, IG converges if d>dc(G).
We now consider the situation where IG is convergent for +>0 but

not for +=0. In this case, the following theorem, which we will show to be
a consequence of [29, Theorem 2], indicates that the infrared degree of
divergence deg0(G) bounds the rate of divergence of IG in the limit + � 0.

Theorem A.2. Suppose deg +(G)>0 but deg0(G)�0. Then the
Feynman integral IG is finite for +>0, and, as + � 0, obeys the bound

IG�const. +deg0(G) |log +|L (A.6)

Proof. Making the change of variables k� i=+&1k i , p~ j=+&1pj gives

IG=+dL&2N |
[&?�+, ?�+]d

d d k� 1

(2?)d } } } |
[&?�+, ?�+]d

d dk� L

(2?)d `
N

i=1

1
p~ 2

i ++~ 2
i

#+dL&2NJG

(A.7)

where +~ i is zero or one, depending on whether + i is zero or +. The rate of
divergence of JG is given in [29] in terms of the ultraviolet degree of
divergence. This is defined by

deg(G)=max
G

max
H : H/G, H{<

deg(H),
(A.8)

deg(H)=dl&2*[line momenta depending on H]

where the maximum is over sets G of loop momenta for G and nonempty
subsets H/G, l denotes the cardinality of H, and a line momentum pi is
said to be depending on H if it is not determined by G"H. Also, since
there is no mention of massless lines in the definition of the ultraviolet
degree of divergence, there is no need to distinguish deg+ and deg0 . It then
follows from [29, Corollary to Theorem 2] that

JG�{const.
const. +&deg(G) |log +|L

(deg(G)<0)
(deg(G)�0)

(A.9)
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Therefore

IG�const. +dL&2N&max[0, deg(G)] |log +|L (A.10)

It remains to relate the exponent of + on the right side to deg0(G).
First, we claim that for any subset H/G,

deg0(H)=dL&2N&deg(G"H) (A.11)

Here, we employ the convention deg0(<)=deg(<)=0. The claim follows
from the fact that the set G of all line momenta is the disjoint union of the
set of line momenta determined by H and the set of line momenta depending
on G"H. Now, we take the minimum of (A.11) over all G and nonempty
H/G. This leads to

deg0(G)=dL&2N&max
G

max
H : H/G, H{<

deg(G"H)

=dL&2N&max
G

max
H : H/G, H{G

deg(H)

=dL&2N&max[0, max
G

max
H : H/G; H{<, G

deg(H)] (A.12)

We first consider the case where the maximum in the definition (A.8)
of deg(G) is attained at some H{G. Then (A.12) implies that dL&2N&
max[0, deg(G)]=deg0(G), and the bound of the theorem follows from
(A.10).

This leaves the case where the maximum is attained at H=G, which
implies deg(G)=dL&2N. Suppose first that dL&2N<0. Then we may
include the case H=G in the right side of (A.12) without changing
its value, so again we have dL&2N&max[0, deg(G)]=deg0(G) and
the desired result follows from (A.10). Finally, suppose that deg(G)=
dL&2N�0. Relaxing the condition H{G on the right side of (A.12)
gives deg0(G) �dL&2N&max[0, deg(G)] = dL & 2N & (dL & 2N ) = 0.
Since deg0(G)�0 by hypothesis, we may assume that deg0(G)=0. The
desired result then follows from (A.10), because the exponent of + in
(A.10) is zero (as we have just shown), and thus IG�const. +0 |log +| L=
const. +deg0(G) |log +|L. K

Theorems A.1 and A.2 reduce the analysis of Feynman integrals to the
evaluation of the infrared degree of divergence. In the next section, we give
a practical method for estimating the infrared degree of divergence of some
of the Feynman diagrams arising in this paper.
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A.2. Inductive Power Counting

Our goal in this section is to provide a lemma which allows the
infrared degree of divergence of some of the Feynman diagrams appearing
in this paper to be accurately estimated in terms of the infrared degree of
divergence of related but simpler Feynman diagrams. This involves con-
structions in which a new Feynman diagram G j ( j=1, 2, 3) is obtained
from G by the addition of new lines and�or vertices. These constructions
are illustrated in Fig. 11. The following lemma gives bounds on deg(G j ) in
terms of deg(G). In the lemma, either deg +(G) or deg0(G) can be used.

Lemma A.3. The infrared degree of divergence of G j is bounded in
terms of that of G as follows:

deg(G j )�{deg(G)&2
deg(G)+min[0, d&6]

( j=1)
( j=2)

(A.13)

Note that construction 3 results from two applications of construction 2,
and hence

deg(G3)�deg(G)+2 min[0, d&6] (A.14)

Proof of Lemma A.3. We begin with the observation that, by defini-
tion, deg(H) depends only on the subspace spanned by H. Therefore,
given p$ � H with p$ determined by H, we can replace some vector p # H

by p$ without changing deg(H). This fact was called naturalness in [30].

Fig. 11. (a) A portion of G is shown together with the corresponding portion of G j resulting
from construction j. Solid dots denote vertices already present in G, while open dots denote
new vertices, present in G j but not in G. Only those parts of G which are changed are shown.
(b) An example of construction 2 is depicted.
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Now we turn to the proof of (A.13) for Construction 1. In Construc-
tion 1, we add a new vertex to an existing line with momentum (say) p1 ,
thereby introducing a new line momentum q1 , as in Fig. 12. Let V be the
number of vertices of G. The momentum conservation equations for G,
which take the form �N

j=1 4ij pj=0 (i=1,..., V&1) for some integers 4ij ,
are then supplemented with an additional equation q1= p1 for G1. Choose
H$ such that the minimum in the definition of deg(G1) is attained at H$.
Either q1 is determined by H$ or it is not. If it is not, then H$ is a linearly
independent subset of the pj obeying �N

j=1 4ij pj=0, and hence serves also
as a subset H=H$ of possible loop momenta for G. Therefore

deg(G1)=deg(H$)=deg(H)�deg(G) (A.15)

If, on the other hand, q1 is determined by H$, then by naturalness, we may
assume p1 # H$ and q1 � H$. (Since p1 and q1 are not independent, they
cannot both be in H$.) Let H=H$. Then H again serves as a subset of
possible loop momenta for G. Since H determines one fewer line than H$
(due to the absence of q1 in G), we have

deg(G1)=deg(H$1)�deg(H)&2�deg(G)&2 (A.16)

This completes the proof of (A.13) for Construction 1.
Next, we turn to the proof of (A.13) for Construction 2. Momenta

before and after Construction 2 are labeled as in Fig. 12. Suppose G has V
vertices. The momentum conservation equations for G can again be written
as

:
N

j=1

4ij pj=0 (i=1,..., V&1) (A.17)

For G2, the corresponding equations can be written, for some integers Ci ,
in the form

:
N

j=1

4ij pj=Ciq1 (i=1,..., V&1), q1=q2 , q3= p2+ p3 (A.18)

(For simplicity, we consider the case where three lines are incident at b, but
the general case follows similarly.) The fact that the same coefficients 4ij

arise for G and G2 can easily be checked by comparing momentum conser-
vation at vertices a, b for G with that at a, b, c, d for G2. Suppose the mini-
mum in the definition of deg(G2) is attained by H$. We again consider two
cases, depending on whether q1 is determined by H$ or not.

1165Incipient Infinite Cluster in High-Dimensional Percolation



File: 822J 254092 . By:XX . Date:05:05:00 . Time:07:41 LOP8M. V8.B. Page 01:01
Codes: 2663 Signs: 1908 . Length: 44 pic 2 pts, 186 mm

Fig. 12. Constructions 1, 2 and labels of relevant momenta.

Suppose first that q1 is determined by H$. By naturalness, we can
assume q1 # H$. Since q1=q2 , therefore q2 � H$. Also, we can assume
q3 � H$, because if q3 # H$ then p1 is also determined (and would not be
in H$ since p1=q1+q3), and thus by naturalness, we can take p1 rather
than q3 as a member of H$. We therefore assume that q1 # H$ and
q2 , q3 � H$. Define H=H$"[q1]. Now H$ is a set of loop momenta for G2,
i.e., a subset of the line momenta [ p1 ,..., pN , q1 , q2 , q3] that is a linearly
independent set in the subspace of the span of these line momenta deter-
mined by the linear constraints (A.18). Therefore H=H$"[q1] is also
such a linearly independent set. Since q1 , q2 , q3 � H, it follows that H

must also be a set of linearly independent vectors in the subspace of the
span of [ p1 ,..., pN] which is determined by (A.17). In other words, H is
a set of loop momenta for G. Since H$=H _ [q1], the number of G 's line
momenta pj determined by H is the same as for H$, as can be seen by
comparing (A.17) and (A.18). This is because the dimension of the solution
space of a nonhomogenous set of equations is the same as the dimension
of the corresponding homogeneous system. Since H has one fewer momen-
tum than H$, and since there are at most three more lines determined by
H$ than by H (namely q1 , q2 , q3), we have

deg(G2)=deg(H$)�deg(H)+d&6�deg(G)+d&6 (A.19)

It remains to consider the case where q1 is not determined by H$. In
this case, at most one of the line momenta p1 and q3 is determined.
However, the choice of labels p1 and q3 for these two lines was arbitrary,
and we can and do choose the labelling that guarantees that the line
momentum corresponding to q3 is not determined. Since none of q1 , q2 , q3

is determined, we have q1 , q2 , q3 � H$. We now define H=H$. It is con-
ceivable that H may not be a subset of a set of line momenta for G, since
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independence of line momenta for G2 (with its additional line momenta qi )
does not necessarily imply independence for G. To deal with this, we note
that we can extend the definition (A.3) of deg(H) also to dependent H,
and still maintain (A.4), because a dependent H will span a smaller space
than an independent H consisting of the same number of vectors and
hence cannot give the minimum in (A.4). Thus we have

deg(G2)=deg(H$)�deg(H)�deg(G) (A.20)

where the first inequality follows from the fact that H may determine more
momenta in G than in G2 (since q1 provides an additional degree of
freedom in (A.18) compared to (A.17)), and the second inequality makes
use of the extended definition of deg(H) described above.

Combining (A.19) and (A.20) completes the proof of (A.13) for
Construction 2, and the lemma is proved. K
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